Synlett 2003(15): 2345-2348  
DOI: 10.1055/s-2003-43341
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Model Route Toward the Synthesis of Conformationally Constrained Polyhydroxylated Dipeptides from Natural Carbohydrates

Alessandro Dondoni*a,b, Alberto Marra*a,b, Barbara Richichib
a Dipartimento di Chimica, Laboratorio di Chimica Organica, Università di Ferrara, Via Borsari 46, 44100 Ferrara, Italy
b Interdisciplinary Center for the Study of Inflammation, Università di Ferrara, Via Borsari 46, 44100 Ferrara, Italy
Fax: +39(0532)291167; e-Mail: adn@dns.unife.it;
Further Information

Publication History

Received 6 October 2003
Publication Date:
21 November 2003 (online)

Abstract

Enantiopure 6,7-diacetoxy-3-t-butoxycarbonylamino-azabicyclo[3.3.0]octan-2-one-8-carboxylic acid 14 (pyrrolizidi­none amino acid) was synthesized in 14 steps and 5.8% overall yield from tri-O-benzyl-d-arabinose 5 through the formyl C-iminosugar 9 as a key intermediate.

    References

  • 1a Olson GL. Bolin DR. Bonner MP. Bös M. Cook CM. Fry DC. Graves BJ. Hatada M. Hill DE. Kahn M. Madison VS. Rusiecki VK. Sarabu R. Sepinwall J. Vincent GP. Voss ME. J. Med. Chem.  1993,  36:  3039 
  • 1b Gante J. Angew. Chem., Int. Ed. Engl.  1994,  33:  1699 
  • 2a Peptide Secondary Structure Mimetics In Tetrahedron Symposia-in-Print   Vol. 49:  Kahn M. Elsevier; Amsterdam: 1993.  p.3433-3689  
  • 2b Hanessian S. McNaughton-Smith G. Lombart H.-G. Lubell WD. Tetrahedron  1997,  53:  12789 ; and references cited therein
  • 3a Halab L. Gosselin F. Lubell WD. Biopolymers  2000,  55:  101 
  • 3b Dietrich E. Lubell WD. J. Org. Chem.  2003,  68:  6988 
  • 4a Gillespie P. Cicariello J. Olson GL. Biopolymers  1997,  43:  191 
  • 4b Takeuchi Y. Marshall GR. J. Am. Chem. Soc.  1998,  120:  5363 
  • 4c Belvisi L. Bernardi A. Manzoni L. Potenza D. Scolastico C. Eur. J. Org. Chem.  2000,  2563 
  • 5a Lombart H.-G. Lubell WD. J. Org. Chem.  1994,  59:  6147 
  • 5b Lombart H.-G. Lubell WD. J. Org. Chem.  1996,  61:  9437 
  • 6a Polyak F. Lubell WD. J. Org. Chem.  2001,  66:  1171 
  • 6b Feng Z. Lubell WD. J. Org. Chem.  2001,  66:  1181 
  • 6c Artale E. Banfi G. Belvisi L. Colombo L. Colombo M. Manzoni L. Scolastico C. Tetrahedron  2003,  59:  6241 
  • 7a Hruby VJ. Li G. Haskell-Luevano C. Shenderovich M. Biopolymers  1997,  43:  219 
  • 7b Wang W. Yang J. Ying J. Xiong C. Zhang J. Cai C. Hruby VJ. J. Org. Chem.  2002,  67:  6353 
  • 8a Gosselin F. Lubell WD. J. Org. Chem.  1998,  63:  7463 
  • 8b Angiolini M. Araneo S. Belvisi L. Cesarotti E. Checchia A. Crippa L. Manzoni L. Scolastico C. Eur. J. Org. Chem.  2000,  2571 
  • 8c Gosselin F. Lubell WD. J. Org. Chem.  2000,  65:  2163 
  • 9a Haubner R. Schmitt W. Hölzemann G. Goodman SL. Jonczyk A. Kessler H. J. Am. Chem. Soc.  1996,  118:  7881 
  • 9b Belvisi L. Bernardi A. Checchia A. Manzoni L. Potenza D. Scolastico C. Castorina M. Cupelli A. Giannini G. Carminati P. Pisano C. Org. Lett.  2001,  3:  1001 
  • 9c Marinelli L. Lavecchia A. Gottschalk K.-E. Novellino E. Kessler H. J. Med. Chem.  2003,  46:  4393 
  • 10a Haubner R. Finsinger D. Kessler H. Angew. Chem. Int. Ed.  1997,  36:  1374 
  • 10b Gottschalk K.-E. Kessler H. Angew. Chem. Int. Ed.  2002,  41:  3767 
  • 10c Hynes RO. Nature Med.  2002,  8:  918 
  • 11 Another class of conformationally constrained polyhydroxylated dipeptides has been recently described, see: Tremmel P. Brand J. Knapp V. Geyer A. Eur. J. Org. Chem.  2003,  878 
  • 12 Arap W. Pasqualini R. Ruoslahti E. Science  1998,  279:  377 
  • Compound 6 was prepared in gram scale quantities by stereoselective addition of 2-lithiothiazole to the nitrone derived from d-arabinose 5 followed by dehydroxylation of the resulting open-chain hydroxylamine and cyclization by intramolecular nitrogen-carbon bond formation via SN2 process. See:
  • 13a Dondoni A. Perrone D. Tetrahedron Lett.  1999,  40:  9375 
  • 13b Dondoni A. Giovannini P. Perrone D. J. Org. Chem.  2002,  62:  7203 
  • 15 Dondoni A. Marra A. Scherrmann M.-C. Bertolasi V. Chem.-Eur. J.  2001,  7:  1371 
  • 16 Schmidt U. Lieberknecht A. Wild J. Synthesis  1984,  53 
  • 18 Unnatural hetero-bifunctional ligands bearing the sialyl Lewis oligosaccharide and the RGD peptide sequence have been recently prepared, see: Matsuda M. Nishimura S.-I. Nakajima F. Nishimura T. J. Med. Chem.  2001,  44:  715 
  • The LDT-mediated binding between the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) and its receptor, the α4β7 integrins, is responsible for the lymphocytes recruitment to inflamed colon. Cyclic peptidomimetics containing the LDT motif are inhibitors of this recognition process and therefore may lead to a new, organ specific treatment of inflammatory diseases.
  • 19a Gottschling D. Boer J. Schuster A. Holzmann B. Kessler H. Angew. Chem. Int. Ed.  2002,  41:  3007 
  • 19b Gottschling D. Boer J. Marinelli L. Voll G. Haupt M. Schuster A. Holzmann B. Kessler H. ChemBioChem  2002,  575 
14

Compound 7. [α]D = +22.2 (c 1.2, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.74 (d, J = 3.3 Hz, 1 H, Th), 7.32-7.14 (m, 16 H, 3 × Ph, Th), 4.68, 4.50 (2 × d, 2 H, J = 11.7 Hz, PhCH 2O), 4.58, 4.46 (2 × d, J = 11.7 Hz, 2 H, PhCH 2O), 4.44 (d, J 2,3 = 4.8 Hz, 1 H, H-2), 4.27 (dd, J 3,4 = 4.5 Hz, 1 H, H-3), 4.16 (dd, J 4,5 = 6.6 Hz, 1 H, H-4), 4.01, 3.82 (2 × d, J = 13.7 Hz, 2 H, PhCH 2N), 3.63 (dd, J 5,6 = 4.5 Hz, J 6,OH = 6.3 Hz, 2 H, 2 × H-6), 3.34 (dt, 1 H, H-5), 2.65 (t, 1 H, OH). Compound 8. [α]D = +35.5 (c 0.5, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.68 (d, J = 3.3 Hz, 1 H, Th), 7.38-7.17, 7.00-6.96 (2 × m, 16 H, 3 × Ph, Th), 6.81-6.72 (m, 4 H, MeOPh), 4.69, 4.54 (2 × d, J = 11.8 Hz, 2 H, PhCH 2O), 4.46 (d, J 2,3 = 2.5 Hz, 1 H, H-2), 4.37, 4.31 (2 × d, J = 11.9 Hz, 2 H, PhCH 2O), 4.29 (dd, J 3,4 = 2.3 Hz, 1 H, H-3), 4.17 (dd, J 5,6a = 7.1 Hz, J 6a,6b = 9.0 Hz, 1 H, H-6a), 4.12 (dd, J 4,5 = 5.6 Hz, 1 H, H-4), 4.08, 3.99 (2 × d, J = 13.6 Hz, 2 H, PhCH 2N), 3.92 (dd, J 5,6b = 5.1 Hz, 1 H, H-6b), 3.77 (s, 3 H, Me), 3.67 (ddd, 1 H, H-5). Compound 9. [α]D = +2.5 (c 0.6, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 9.30 (d, J = 1.3 Hz, 1 H, CHO), 7.40-7.20, 7.16-7.11 (2 × m, 15 H, 3 × Ph), 6.84 (s, 4 H, MeOPh), 4.59, 4.51 (2 × d, J = 11.8 Hz, 2 H, PhCH 2O), 4.44, 4.28 (2 × d, J = 11.7 Hz, 2 H, PhCH 2O), 4.29 (dd, J 5,6a = 7.7 Hz, J 6a,6b = 9.3 Hz, 1 H, H-6a), 4.27, 3.76 (2 × d, J = 13.2 Hz, 2 H, PhCH 2N), 4.11 (dd, J 2,3 = 1.2 Hz, J 3,4 = 1.5 Hz, 1 H, H-3), 4.10 (dd, J 4,5 = 4.3 Hz, 1 H, H-4), 4.09 (dd, J 5,6b = 5.3 Hz, 1 H, H-6b), 3.78 (s, 3 H, Me), 3.68 (ddd, 1 H, H-5), 3.38 (dd, 1 H, H-2). 13C NMR (100 MHz, CDCl3): δ = 204.7 (C-1), 153.9, 153.0, 115.4, 114.6 (MeOPh), 138.8, 137.5, 137.4, 129.1-127.5 (3 × Ph), 84.2 (C-3), 80.0 (C-4), 76.2 (C-2), 71.8 (PhCH2O), 71.4 (PhCH2O), 67.2 (C-6), 66.2 (C-5), 60.7 (PhCH2N), 55.8 (MeO).

17

Compound 11. [α]D = -8.7 (c 0.8, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.34-7.18 (m, 20 H, 4 × Ph), 7.08 (br s, 1 H, NH), 6.81-6.72 (m, 4 H, MeOPh), 6.21 (d, J = 8.2 Hz, 1 H, CH=), 5.09, 5.01 (2 × d, J = 12.3 Hz, 2 H, PhCH 2OCO), 4.51, 4.46 (2 × d, J = 11.8 Hz, 2 H, PhCH 2O), 4.45 (s, 2 H, PhCH 2O), 4.12 (dd, J 5,6a = 7.2 Hz, J 6a,6b = 9.4 Hz, 1 H, H-6a), 4.04 (dd, J 3,4 = 3.0 Hz, J 4,5 = 5.8 Hz, 1 H, H-4), 3.92 (dd,
J 5,6b = 4.7 Hz, 1 H, H-6b), 3.89, 3.80 (2 × d, J = 13.6 Hz,
2 H, PhCH 2N), 3.89 (dd, J 2,3 = 4.8 Hz, 1 H, H-3), 3.78, 3.71 (2 × s, 6 H, 2 × Me), 3.56 (dd, 1 H, H-2), 3.44 (ddd, 1 H, H-5). Compound 13. [α]D = -45.3 (c 0.4, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 6.86-6.79 (m, 4 H, MeOPh), 5.50 (dd, J 6,7 = J 7,8 = 7.7 Hz, 1 H, H-7), 5.19 (dd, J 5,6 = 7.3 Hz, 1 H, H-6), 4.94 (br d, J 3,NH = 5.5 Hz, 1 H, NH), 4.75 (dd, J 8,9a = 3.9, J 9a,9b = 10.0 Hz, 1 H, H-9a), 4.44 (dd, J 3,4a = 6.9 Hz, J 3,4b = 12.1 Hz, 1 H, H-3), 4.28 (ddd, J 8,9b = 1.0 Hz, 1 H, H-8), 3.87 (dd, 1 H, H-9b), 3.76 (s, 3 H, Me), 3.64 (dd, J 4a,5 = 5.3 Hz, J 4b,5 = 10.1 Hz, 1 H,, H-5), 2.96 (ddd, J 4a,4b = 11.8 Hz, 1 H, H-4a), 2.10, 2.02 (2 × s, 6 H, 2 × Ac), 1.96 (ddd, 1 H, H-4b), 1.41 (s, 9 H, t-Bu). Compound epi -13. [α]D = -34.9 (c 0.7, CHCl3). 1H NMR (400 MHz, CDCl3):
δ = 6.85-6.78 (m, 4 H, MeOPh), 5.52 (dd, J 6,7 = 7.8 Hz, J 7,8 = 7.6 Hz, 1 H, H-7), 5.12 (dd, J 5,6 = 7.6 Hz, 1 H, H-6), 5.04 (br s, 1 H, NH), 4.69 (dd, J 8,9a = 4.6 Hz, J 9a,9b = 10.2 Hz, 1 H, H-9a), 4.28 (ddd, J 8,9b = 1.6 Hz, 1 H, H-8), 4.05-3.97 (m, 2 H, H-3, H-5), 3.94 (dd, 1 H, H-9b), 3.75 (s, 3 H, Me), 2.48 (ddd, J 3,4a = 7.6 Hz, J 4a,4b = 13.6, J 4a,5 = 9.5 Hz, 1 H, H-4a), 2.34 (ddd, J 3,4b = 2.2 Hz, J 4b,5 = 6.8 Hz, 1 H, H-4b), 2.10, 1.99 (2 × s, 6 H, 2 Ac), 1.42 (s, 9 H, t-Bu). Compound 14 Methyl Ester. [α]D =
-63.4 (c 0.3, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 5.61 (dd, J 6,7 = 9.3 Hz, J 7,8 = 8.2 Hz, 1 H, H-7), 5.10 (dd, J 5,6 = 8.4 Hz, 1 H, H-6), 5.08 (br d, J 3,NH = 7.0 Hz, 1 H, NH), 4.58 (d, 1 H, H-8), 4.53 (ddd, J 3,4a = 6.5 Hz, J 3,4b = 12.0 Hz, 1 H, H-3), 3.78 (s, 3 H, Me), 3.69 (ddd, J 4a,5 = 5.4 Hz, J 4b,5 = 9.5 Hz, 1 H, H-5), 3.02 (ddd, J 4a,4b = 12.5 Hz, 1 H, H-4a), 2.16 (ddd, 1 H, H-4b), 2.09, 2.06 (2 × s, 6 H, 2 × Ac), 1.43 (s, 9 H, t-Bu). 13C NMR (100 MHz, CDCl3): δ = 173.4 (Me3COCO), 173.3 (C-2), 170.4, 169.6 (CH3 CO), 167.8 (CO2Me), 80.1 (Me3 C), 75.7 (C-7), 75.3 (C-6), 57.7 (C-5), 56.5 (C-8), 54.3 (C-3), 52.8 (MeO), 38.8 (C-4), 28.3 (Me 3C), 20.6 and 20.3 (CH 3CO).