Synlett 2003(15): 2354-2358  
DOI: 10.1055/s-2003-43337
LETTER
© Georg Thieme Verlag Stuttgart · New York

Pd-Catalysed Synthesis of 5-Substituted Proline Derivatives from Acetylene-Containing Amino Acids

Bart C. J. van Esseveldta, Floris L. van Delfta, Jan M. M. Smitsb, René de Gelderb, Floris P. J. T. Rutjes*a
a Department of Organic Chemistry, NSRIM, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
Fax: +31(24)3653393; e-Mail: rutjes@sci.kun.nl;
b Department of Inorganic Chemistry, NSRIM, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
Further Information

Publication History

Received 2 September 2003
Publication Date:
21 November 2003 (online)

Abstract

2,5-Disubstituted pyrrolines have been synthesised via Pd-catalysed 5-endo-dig cyclisations of substituted acetylene-containing amino acids. It has also been shown that these pyrrolines can be efficiently transformed into the corresponding saturated proline derivatives.

    References

  • 1a Zhang J. Wang W. Xiong C. Hruby VJ. Tetrahedron Lett.  2003,  44:  1413 
  • 1b Del Valle JR. Goodman M. Angew. Chem. Int. Ed.  2002,  41:  1600 
  • 1c Flamant-Robin C. Wian Q. Chiaroni A. Sasaki NA. Tetrahedron Lett.  2002,  58:  10475 
  • 1d Davis FA. Fang T. Goswami R. Org. Lett.  2002,  4:  1599 
  • 1e Van Betsbrugge J. Van Den Nest W. Verheyden P. Tourwé D. Tetrahedron  1998,  54:  1753 
  • 2a Damour D. Herman F. Labaudinière R. Pantel G. Vuilhorgne M. Mignani S. Tetrahedron  1999,  55:  10135 
  • 2b Schumacher KK. Jiang J. Joullié MM. Tetrahedron: Asymmetry  1998,  9:  47 
  • 3a Fournie-Zaluski M.-C. Coric P. Thery V. Gonzalez W. Meudal H. Turcaud S. Michel J.-B. Roques BP. J. Med. Chem.  1996,  39:  2594 
  • 3b Manfré F. Pulicani JP. Tetrahedron: Asymmetry  1994,  5:  235 
  • 4a Molina MT. Valle CD. Escribano AM. Ezquerra J. Pedregal C. Tetrahedron  1993,  49:  3801 
  • 4b Ezquerra J. Mendoza JD. Pedregal C. Ramirez C. Tetrahedron Lett.  1992,  33:  5589 
  • 5a Wallén EAA. Christiaans JAM. Gynther J. Vepsäläinen J. Tetrahedron Lett.  2003,  44:  2081 
  • 5b Halab L. Bélec L. Lubell WD. Tetrahedron  2001,  57:  6439 
  • 5c Collado I. Ezquerra J. Pedregal C. J. Org. Chem.  1995,  60:  5011 
  • 6a Knight DW. Redfern AL. Gilmore J. J. Chem. Soc., Perkin Trans. 1  2002,  622 
  • 6b Knight DW. Redfern AL. Gilmore J. Chem. Commun.  1998,  2207 
  • 7 van Esseveldt BCJ. van Delft FL. de Gelder R. Rutjes FPJT. Org. Lett.  2003,  5:  1717 
  • 8a Wolf LB. Tjen KCMF. ten Brink HT. Blaauw RH. Hiemstra H. Schoemaker HE. Rutjes FPJT. Adv. Synth. Catal.  2002,  344:  70 
  • 8b Wolf LB. Tjen KCMF. Rutjes FPJT. Hiemstra H. Schoemaker HE. Tetrahedron Lett.  1998,  39:  5081 
  • This trifunctional amino acid(propargylglycine) is commercially available, but in our group also readily prepared via a chemo-enzymatic procedure that has been developed in collaboration with DSM Research (Geleen, The Netherlands):
  • 9a Wolf LB. Sonke T. Tjen KCMF. Kaptein B. Broxterman QB. Schoemaker HE. Rutjes FPJT. Adv. Synth. Catal.  2001,  343:  662 
  • 9b Sonke T. Kaptein B. Boesten WHJ. Broxterman QB. Kamphuis J. Formaggio F. Toniolo C. Rutjes FPJT. Schoemaker HE. In Stereoselective Biocatalysis   Patel RN. Marcel Dekker; New York: 2000.  p.23 
  • 10 Tykwinski RR. Angew. Chem. Int. Ed.  2003,  42:  1566 
  • 11 IJsselstijn M. Kaiser J. van Delft FL. Schoemaker HE. Rutjes FPJT. Amino Acids  2003,  24:  263 
  • 12 Rutjes FPJT. Wolf LB. Schoemaker HE. J. Chem. Soc., Perkin Trans. 1  2000,  4197 
  • Similar elimination of p-toluenesulfinic acid from sulfonamide moieties has previously been observed:
  • 14a Ferreira PMT. Maia HLS. Monteiro LS. Tetrahedron Lett.  2002,  43:  4491 
  • 14b Ferreira PMT. Maia HLS. Monteiro LS. Sacramento J. J. Chem. Soc., Perkin Trans. 1  2001,  3167 
  • 15 Rudisill DE. Stille JK. J. Org. Chem.  1989,  54:  5856 
  • 19 For a review on N-acyliminium ions and related structures, see: Speckamp WN. Moolenaar MJ. Tetrahedron  2000,  56:  3817 
13

All new compounds were obtained in analytically pure form and were appropriately characterised by IR, mp, 1H and 13C NMR, high resolution mass data and rotational values.

16

Crystallographic data of structures 21 and 26 have both been deposited at the Cambridge Crystallographic Data Centre and have been allocated the deposition numbers CCDC 212273 and CCDC 212274, respectively.

17

To determine the enantiopurity of compound 24, racemic 24 was synthesised and separated on a Chiralcel OD column (eluant: i-PrOH/hexane = 1:9). Using this assay, the ee of pyrroline 24 was determined to be >99%.

18

Spek, A. L. PLATON, A Multipurpose Crystallographic Tool, 2002, Utrecht University, Utrecht, The Netherlands.

20

Typical experimental procedures and data were as follows.
Formation of Enyne 6: To a solution of 5 (418 mg, 1.17 mmol) in DMF (20 mL), K2CO3 (808 mg, 5.85 mmol) and Pd(PPh3)4 (71 mg, 0.06 mmol) were added and the reaction mixture was stirred at 80 °C. Upon completion (TLC), the reaction mixture was poured into sat. aq. NaHCO3 (40 mL) and the aqueous layer was extracted with Et2O (30 ml, 3×). The combined organic layers were washed with brine (30 mL), dried (MgSO4) and concentrated in vacuo. The crude product was purified by chromatography (EtOAc/heptane = 1:9) to afford 6 (45 mg, 0.22 mmol, 19%) as a yellow solid. Rf = 0.23 (EtOAc/heptane = 1:9). IR(neat): 3448, 3354, 1705, 1614, 1591, 1487, 1441 cm-1. Mp 49.4 °C. 1H NMR (300 MHz, CDCl3): δ = 7.44 (m, 2 H), 7.31 (m, 3 H), 5.59 (s, 1 H), 4.57 (br s, 2 H), 3.82 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 164.0, 141.2, 131.1, 128.3, 128.1, 123.4, 100.3, 86.6, 85.7, 52.8. HRMS (EI) calcd for C12H11NO2: 201.0790. Found: 201.0792.
Formation of Pyrroline 24: To a solution of 18 (396 mg, 1.11 mmol) in MeCN (12 mL), PdCl2(MeCN)2 (29 mg, 0.11 mmol) was added and the reaction mixture was refluxed. Upon completion (TLC), the reaction mixture was concentrated in vacuo and the crude product was purified by chromatography (EtOAc/heptane = 1:3) to afford 24 (192 mg, 0.54 mmol, 48%) as a white solid. Rf = 0.36 (EtOAc/heptane = 1:2); [α]D +82.9 (c 1.0, CH2Cl2). Mp 88.3 °C. IR(neat): 2947, 1736, 1595, 1493, 1444 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.54 (m, 4 H), 7.29 (m, 5 H), 5.35 (dd, J = 2.1, 3.6 Hz, 1 H), 4.91 (dd, J = 2.1, 9.3 Hz, 1 H), 3.81 (s, 3 H), 2.56 (ddd, J = 2.4, 3.6, 17.1 Hz, 1 H), 2.42 (s, 3 H), 2.31 (ddd, J = 2.1, 9.6, 17.1 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 171.9, 144.9, 144.2, 134.2, 132.6, 129.6, 129.0, 128.0, 128.0, 127.9, 115.3, 63.5, 53.0, 32.7, 21.7. HRMS (EI) calcd for C19H19NO4S: 357.1035. Found: 357.1032.
Formation of Proline Derivative 26: To a solution of 24 (120 mg, 0.34 mmol) in CH2Cl2 (6 mL), Et3SiH (0.27 mL, 1.70 mmol), TFAA (0.24 mL, 1.70 mmol) and TFA (0.13 mL, 1.70 mmol) were added at 0 °C. The reaction mixture was allowed to reach r.t. and stirred until the reaction had reached completion (TLC). The reaction mixture was concentrated in vacuo and purified by chromatography (EtOAc/heptane = 1:4) to afford a diastereomeric mixture of 26 and the trans-isomer 27 (26/27 = 9:1, 90 mg, 0.25 mmol, 74%). Purification of this mixture by chromatography (EtOAc/heptane = 1:5) followed by crystallisation from Et2O gave diastereomerically pure 26 as a white solid. Rf = 0.60 (EtOAc/heptane = 1:1); [α]D -68.9 (c 0.5, CH2Cl2). Mp 130.3 °C. IR(neat): 1745, 1597, 1495, 1344 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.52 (d, J = 8.4 Hz, 2 H), 7.40 (m, 2 H), 7.18 (m, 5 H), 4.77 (t, J = 6.6 Hz, 1 H), 4.57 (t, J = 6.3 Hz, 1 H), 3.79 (s, 3 H), 2.36 (s, 3 H), 2.04 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 172.5, 143.3, 141.1, 135.4, 129.2, 128.1, 127.7, 127.2, 127.0, 65.1, 62.2, 52.7, 36.1, 29.7, 21.8. HRMS (EI) calcd for C19H21NO4S: 359.1191. Found: 359.1183.