RSS-Feed abonnieren
DOI: 10.1055/s-2003-43332
Radical-Induced Cycloaromatization: Routes to Fluoranthenes and Acephenanthrylenes
Publikationsverlauf
Publikationsdatum:
04. Dezember 2003 (online)
Abstract
The cycloaromatization of easily-prepared arenediynes is an efficient route to fused aromatic systems, but the requirement of very high temperatures to induce this reaction limits both scalability and generality. We demonstrate that cycloaromatization can be induced by addition of a radical species to an arenediyne unit. Tethering this radical to the enediyne leads to the formation of larger fused systems, such as fluoranthenes and acephenanthrylenes, in a single step.
Key words
polycyclic aromatic hydrocarbon - Bergman reaction - enediyne - cycloaromatization
- 1
Sangaiah R.Gold A.Toney GE. Polynuclear Aromatic Hydrocarbons: Formation, Metabolism and MeasurementCooke M.Dennis AJ. Butterworth; Woburn, MA: 1983. -
2a
Plummer BF.AI-Saigh ZY. J. Phys. Chem. 1983, 87: 1579 -
2b
Dang H.Levitus M.Garcia-Garibay MA. J. Am. Chem. Soc. 2002, 124: 136 -
(c)
Ferree WI.Plummer BF.Schloman WW. J. Am. Chem. Soc. 1974, 96: 7741 ; and references cited therein -
(d)
Koziar JC.Cowan DO. Acc. Chem. Res. 1978, 11: 334 ; and references therein -
3a
Clayton MD.Rabideau PW. Tetrahedron Lett. 1997, 38: 741 -
3b
Sygula A.Rabideau PW. J. Am. Chem. Soc. 1998, 120: 12666 -
3c
Scott LT.Bratcher MS.Hagen S. J. Am. Chem. Soc. 1996, 118: 8743 -
3d
Seiders TJ.Elliott EL.Grube GH.Siegel JS. J. Am. Chem. Soc. 1999, 121: 7804 -
3e
Sygula A.Rabideau PW. J. Am. Chem. Soc. 1999, 121: 7800 -
4a
Gundlach DJ.Nichols JA.Zhou L.Jackson TN. Appl. Phys. Lett. 2002, 80: 2925 -
4b
Würthner F. Angew. Chem. Int. Ed. 2001, 40: 1037 -
4c
Nelson SF.Lin Y.-Y.Gundlach DJ.Jackson TN. Appl. Phys. Lett. 1998, 72: 1854 -
4d
Dimitrakopoulos CD.Furman BK.Graham T.Hedge S.Purushothaman S. Synth. Met. 1998, 92: 47 -
4e
Senadeera GKR.Jayaweera PVV.Perera VPS.Tennakone K. Solar Energy 2002, 73: 103 -
4f
Videlot C.Fichou D.Garnier F. J. Chim. Phys. Phys.-Chim. Biol. 1998, 95: 1335 - 5
Meng H.Bendikov M.Mitchell R.Helgeson F.Wudl F.Bao Z.Siegrist T.Kloc C.Chen C.-H. Adv. Mater. 2003, 15: 1090 - 6
Sheraw C.Jackson TN.Eaton DL.Anthony JE. Adv. Mater. in press -
7a
Bergman RG. Acc. Chem. Res. 1973, 6: 25 -
7b
Lockhart TP.Comita PB.Bergman RG. J. Am. Chem. Soc. 1981, 103: 4082 -
8a
Bowles DM.Anthony JE. Org. Lett. 2000, 2: 85 -
8b
Chow S.-Y.Palmer GJ.Bowles DM.Anthony JE. Org. Lett. 2000, 2: 961 -
9a
Wu M.-J.Lin C.-F.Lu W.-D. J. Org. Chem. 2002, 67: 5907 -
9b
Wu M.-J.Lin C.-F.Chen S.-H. Org. Lett. 1999, 1: 767 -
9c
Magnus P.Eisenbeis SA.Rose WC.Zein N.Solomon W. J. Am. Chem. Soc. 1993, 115: 12627 -
9d
Sugiyama H.Yamashita K.Nishi M.Saito I. Tetrahedron Lett. 1992, 33: 515 -
10a
Eshdat L.Berger H.Hopf H.Rabinovitz M. J. Am. Chem. Soc. 2002, 124: 3822 -
10b For radical-cation cyclization, see:
Wandel H.Wiest O. J. Org. Chem. 2002, 67: 388 - 11
Grissom JW.Gunawardena GU.Klingberg S.Huang D. Tetrahedron 1996, 19: 6453 - 12
Bowles DM.Palmer GJ.Landis CA.Scott JL.Anthony JE. Tetrahedron 2001, 57: 3753 - 13
Baldwin J. J. Chem. Soc., Chem. Commun. 1976, 734 - 14
Negishi E. Acc. Chem. Res. 1982, 15: 340 - 16
Grissom JW.Calkins TL.Egan M. J. Am. Chem. Soc. 1993, 115: 11744 - 18
Schmittel M.Kiau S. Chem. Lett. 1995, 953 - 19
Alabugin IV.Kovalenko SV. J. Am. Chem. Soc. 2002, 124: 9052 - 20
Alabugin IV.Manoharan M. J. Am. Chem. Soc. 2003, 125: 4495 - 21
Plummer BF. J. Phys. Chem. 1987, 91: 50351
References
For the synthesis of bromoarenediynes, see ref. [8b]
17Details of the crystal structure determination (deposition number CCDC 220601) may be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk; web: www.ccdc.cam.ac.uk].
22Selected characterization data. Compound 4a (silylated): mp. 110-111 °C (EtOH). 1H NMR (200 MHz, CDCl3): δ = 0.08 (s, 9 H), 0.33 (s, 9 H), 1.35 (s, 9 H), 7.20-7.25 (m, 1 H), 7.30 (d, J = 2.2 Hz, 1 H), 7.34 (s, 1 H), 7.36 (s, 1 H), 7.56 (d, J = 2.2 Hz, 1 H), 7.68 (d, J = 7.6 Hz, 1 H) ppm. 13C NMR (50 MHz, CDCl3): δ = -0.34, -0.04, 30.97, 34.75, 97.52, 101.64, 101.98, 104.04, 122.75, 123.29, 125.27, 126.58, 127.18, 128.29, 128.84, 131.43, 132.41, 141.58, 144.20, 150.68 ppm. FTIR (KBr): 3052.63, 2955.33, 2893.88, 2151.35, 1244.95, 871.12, 840.40 cm-1. HRMS: m/z (%) calcd for C22H33BrSi2: 480/482. Found: 482.1284(20) [M + 2], 480.1304(25) [M+], 467(80) [M+ - CH3]. Compound 5a: 1H NMR (200 MHz, CDCl3): δ = 1.43 (s, 9 H), 7.34-7.45 (m, 4 H), 7.55-7.63 (m, 1 H), 7.77-7.81 (m, 1 H), 7.85-7.95 (m, 2 H), 8.06 (d, J = 2 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 29.69, 31.65, 119.03, 119.32, 121.37, 121.54, 121.81, 123.05, 125.47, 125.79, 126.51, 127.06, 127.37, 127.95, 128.96, 132.12, 132.81, 151.38 ppm. HRMS: m/z (%) calcd for C20H18: 258.1409. Found: 258.1403(65) [M+], 243(100) [M+ - CH3]. Anal. Calcd for C20H18: C, 92.97%; H, 7.02%. Found: C, 92.74%; H, 7.03%. Compound 6c: Yellow oil. 1H NMR (200 MHz, CDCl3): δ = 1.75 (s, 9 H), 7.22 (m, 7 H), 7.31 (d, J = 7 Hz, 1 H), 7.33 (m, 5 H), 7.35 (d, J = 8 Hz, 1 H), 7.55 (d, J = .5 Hz, 1 H), 7.67 (d, J = 7 Hz, 1 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 30.96, 34.76, 87.51, 89.06, 93.11, 96.38, 115.16, 120.18, 121.90, 122.81, 123.33, 123.42, 125.49, 125.55, 126.74, 126.81, 127.24, 127.87, 127.91, 128.10, 128.32, 129.04, 131.26, 131.55, 131.59, 131.77, 132.57, 141.60, 143.44, 150.67 ppm. MS (EI, 70 eV): m/z (%) = 488(10) [M+], 473(80) [M+ - CH3]. Anal. Calcd for C32H25Br: C, 78.52%; H, 5.14%. Found: C, 78.33%; H, 4.90%. Compound 7: mp 170-171 °C (MeOH). 1H NMR (200 MHz, CDCl3): δ = 1.82 (s, 9 H), 7.25 (m, 6 H), 7.37 (m, 5 H), 7.51 (s, 1 H), 7.73 (t, J = 8 Hz, 1 H), 7.95 (t, J = 8 Hz, 1 H), 8.11 (d, J = 7 Hz, 1 H), 8.71 (s, 1 H), 9.03 (d, J = 8 Hz, 1 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 31.81, 35.65, 116.57, 120.74, 122.85, 125.20. 125.98, 126.20, 127.02, 127.19, 127.27, 127.38, 128.34, 128.93, 131.21, 131.49, 131.56, 134.25, 136.93, 137.19, 138.50, 138.92, 145.23, 151.51 ppm. MS: m/z (%) calcd for C32H26: 410.2035. Found: 410.2035(20) [M+], 395(100) [M+ - CH3].