Subscribe to RSS
DOI: 10.1055/s-2003-42493
A Convenient and Direct Route to Phosphinoalkynes via Copper-Catalyzed Cross-Coupling of Terminal Alkynes with Chlorophosphanes
Publication History
Publication Date:
19 November 2003 (online)
Abstract
A new efficient method to obtain various alkynylphosphanes RnP(-R′)3-n [R = Ar, Alk, alkoxy, amido R′ = Ar, Het, Alk, CH2Z (Z = OMe, NMe2), n = 0-2] has been developed by means of cross-coupling reaction of chlorophosphanes RnPCl3-n (R = Ar, Alk, Alkoxy) with terminal alkynes catalyzed by cuprous salts.
Key words
phosphorus - cross-coupling - alkynes - copper - homogenous catalysis
-
1a
The Chemistry of Organophosphorus Compounds
Vol. 1-4:
Hartley FR. Wiley; Chichester: 1990-1996. -
1b
Quin LD. A Guide to Organophosphorus Chemistry Wiley; New York: 2000. -
1c
Houben-Weyl, Methoden der organischen Chemie
Part 2, Vol. 5:
Müller E. Thieme Verlag; Stuttgart: 1977. -
2a
Taylor NJ.Carty AJ. J. Chem. Soc., Dalton Trans. 1976, 799 -
2b
Carty AJ.Jacobson SE.Taylor NJ. J. Am. Chem. Soc. 1975, 97: 7254 -
2c
Carty AJ.Johnson DK.Jacobson SE. J. Am. Chem. Soc. 1979, 101: 5612 -
2d
Liu X.Mok KF.Leung P.-H. Organometallics 2001, 20: 3918 -
3a
Liu X.Ong TKW.Selvaratnam S.Vittal JJ.White AJP.Williams DJ.Leung P.-H. J. Organomet. Chem. 2002, 643: 4 -
3b
Markl G.Matthes D. Angew. Chem., Int. Ed. Engl. 1972, 11: 1019 -
4a
Berenguer J.Bernechea M.Fornies J.Gomez J.Lalinde E. Organometallics 2002, 21: 2314 -
4b
Davies JE.Mays MJ.Raithby PR.Sarveswaran K.Solan GA. J. Chem. Soc., Dalton Trans. 2001, 1269 -
4c
Louattani E.Suades J. J. Organomet. Chem. 2000, 604: 234 -
4d
Moldes I.Ros J. Inorg. Chim. Acta 1995, 232: 75 -
5a
Edwards AJ.Macgregor SA.Rae AD.Wenger E.Willis AC. Organometallics 2001, 20: 2864 -
5b
Davies JE.Mays MJ.Raithby PR.Sarveswaran K.Solan GA. J. Chem. Soc., Dalton Trans 2000, 3331 -
5c
Bennett MA.Cobley CJ.Rae AD.Wenger E.Willis AC. Organometallics 2000, 19: 1522 -
5d
Miquel Y.Cadierno V.Donnadieu B.Igau A.Majoral J.-P. Organometallics 2000, 19: 54 -
5e
Rosa P.Le Floch P.Ricard L.Mathey F. J. Am. Chem. Soc. 1997, 119: 9417 -
5f
Lang H.Winter M.Leise M.Zsolnai L.Buechner M.Huttner G. J. Organomet. Chem. 1997, 533: 167 -
5g
Miquel Y.Igau A.Donnadieu B.Majoral J.-P.Dupuis L.Pirio N.Meunier P. Chem. Commun. 1997, 279 -
6a
Low PJ.Hayes TM.Udachin KA.Goeta AE.Howard JAK.Enright GD.Carty AJ. J. Chem. Soc., Dalton Trans. 2002, 1455 -
6b
Jeffery JC.Pereira RMS.Vargas MD.Went MJ. J. Chem. Soc., Dalton Trans. 1995, 1805 -
6c
Benvenutti MHA.Vargas MD.Braga D.Grepioni F.Parisini E.Mann BE. Organometallics 1993, 12: 2955 -
6d
Imhof W.Eber B.Huttner G.Emmerich Ch. J. Organomet. Chem. 1993, 447: 21 -
6e
Cherkas AA.Taylor NJ.Carty AJ. J. Chem. Soc., Chem. Commun. 1990, 385 -
6f
Sappa E.Pasquinelli G.Tiripicchio A.Tiripicchio CM. J. Chem. Soc., Dalton Trans. 1989, 601 -
6g
Van Gastel F.MacLaughlin SA.Lynch M.Carty AJ.Sappa E.Tiripicchio A.Camellini MT. J. Organomet. Chem. 1987, 326: C65 - 7
Beletskaya IP.Afanasiev VV.Kazankova MA.Efimova IV. Org. Lett. 2003, 5: 4309 - 8
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E. Wiley-VCH; New York: 2002. -
10a
Stephens RD.Castro CE. J. Org. Chem. 1963, 28: 2163 -
10b
Stephens RD.Castro CE. J. Org. Chem. 1963, 28: 3313 -
10c
Castro CE.Gaughan EJ.Owsley DC. J. Org. Chem. 1966, 31: 4071
References
As found from X-ray data (Figure [1] ), the copper atom in the structure of (Ph2PCl)3CuI adopts a tetrahedral coordination. The copper and chlorine atoms are situated on either sides of the plane of phosphorus atoms. The Cu(1) atom is deviated from the plane of P(1), P(2) and P(3) atoms to 0.75 Å. Also, the chlorine atoms are antiperiplanar to the iodine atom, the torsion angle ClPCuI is equal to 167° on an average. X-ray investigation of structure 1 was carried out on Bruker Smart CCD 1000 diffractometer at 293 K. Crystals are monoclinic, a = 20.381(4), b = 9.462(2), 20.411(4) Å, β = 112.395(4)°, space group P21/c, Z = 4 M = 852.3, F(000) = 1696, µ[MoK& agr;] = 18.25 cm-1. Intensities of 27979 reflections were measured and 10473 independent reflections were used for further refinement. The refinement was converged to wR2 = 0.0623 and GOF = 0.980 for all independent reflections [R1 = 0.0325 was calculated against F2 for 5790 observed reflections with I > 2 σ(I)]. Experimental and crystal data were submitted to Cambridge Crystallographic Data Centre.
11For example: 2-(2-Pyridyl)ethynyldiphenylphosphane(3g): Yield: 93%; light yellow solid; mp 32 °C. 31P{H} NMR (162.6 MHz, CDCl3): δ = -34.44 (s). 1H NMR (400 MHz, CDCl3): δ = 6.98 (m, 1 H), 7.19 (m, 1 H), 7.21 (m, 7 H), 7.37 (m, 1 H), 7.61 (dt, 4 H, J = 1.4 Hz), 8.43 (m, 1 H). 13C NMR (100.6 MHz, CDCl3): δ = 86.11 (d, J = 9.8 Hz), 106.22, 122.74, 126.78, 128.15 (d, J = 7.6 Hz), 128.69, 132.30 (d, J = 21.3 Hz), 134.79 (d, J = 7.5 Hz), 135.55, 142.04, 149.46. (3-Methoxyprop-1-ynyl)(diphenyl)phosphane(3j): Yield: 49%; light yellow oil; bp 160 °C/0.1 Torr. 31P{H} NMR (162.6 MHz, CDCl3): δ = -34.62 (s). 1H NMR (400 MHz, CDCl3): δ = 3.31 (s, 3 H), 4.17 (s, 2 H), 7.24 (m, 6 H), 7.61 (dt, 4 H, J = 1.7 Hz). 13C NMR (100.6 MHz, CDCl3): δ = 57.23, 60.20, 83.22 (d, J = 7.6 Hz), 104.36, 128.26 (d, J = 7.6 Hz), 128.72, 132.14 (d, J = 21.3 Hz), 135.59.