Klinische Neurophysiologie 2003; 34(3): 127-137
DOI: 10.1055/s-2003-42248
Originalia
© Georg Thieme Verlag Stuttgart · New York

Klinische Studie zur Anwendung der hochfrequenten monopolaren Kortexstimulation (MKS) für die intraoperative Ortung und Überwachung motorischer Hirnareale bei Eingriffen in der Nähe der Zentralregion

Clinical Studies on the Use of High Frequency Monopolar Cortex Stimulation for Intraoperative Monitoring and Localisation of Motor Function Centres in Surgery of the Central Region of the BrainO.  Süss1 , Ö.  Ciklatekerlio2 , S.  Süss1 , C.  Da Silva1 , M.  Brock1 , T.  Kombos1
  • 1Neurochirurgische Klinik, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin
  • 2Dept. of Neurosurgery, University of Colorado Health Sciences Centre, Denver, Colorado 80262, USA
Further Information

Publication History

Publication Date:
18 September 2003 (online)

Zusammenfassung

Die Radikalität der Exstirpation von Hirntumoren wird durch das Risiko postoperativer neurologischer Ausfälle eingeschränkt. Aus diesem Grund ist die Anwendung intraoperativer neurophysiologischer Untersuchungsmethoden bei Operationen im Bereich motorischer Funktionsareale unerlässlich. Diese Methoden basieren auf der elektrischen Erregbarkeit der menschlichen Hirnrinde. Die bis dato als Routineuntersuchung verwandte direkte bipolare Kortexstimulation ist jedoch durch die Gefahr epileptischer Anfälle, intraoperativer Massenbewegungen sowie durch eine lange Untersuchungsdauer eingeschränkt. In der vorliegenden Studie wurde bei 184 zerebralen Eingriffen in motorisch eloquenten Arealen untersucht, ob die erst von wenigen Autoren beschriebene monopolare Kortexstimulation (MKS) sowohl eine zuverlässige intraoperative Lokalisation (Mapping) als auch eine kontinuierliche Überwachung (Monitoring) motorischer Funktionszentren ermöglicht. Die hierfür benötigten Stimulations- und Ableitparameter sowie Zusammenhänge zwischen operativen Manövern, intraoperativen Potenzialveränderungen und der postoperativen klinischen Symptomatik sollten untersucht werden. Die Ortung motorischer Rindenareale (MKS-Mapping) war in 91,8 % der Fälle möglich. Die Ableitung von Muskelaktionspotenzialen (CMAPs) erfolgte, gemäß dem großen Repräsentationsareal von Hand und Unterarm in der primären motorischen Hirnrinde, hauptsächlich über die Thenarmuskulatur und die Unterarmflexoren. Die am häufigsten erfolgreich eingesetzten Stimulationsparameter waren eine Stimulationsfrequenz von 400 Hz mit einer Impulssequenz von fünf Impulsen und einer Impulsdauer von 0,3 ms. Die hierunter benötigten Stimulationsstärke lag im Durchschnitt bei 15,3 ± 8,2 mA. Die im Verlauf der intraoperativen Funktionsüberwachung (MKS-Monitoring) untersuchten Parameter Latenz, Potenzialbreite und Amplitude hatten eine große individuelle Variationsbreite; so konnten Latenzschwankungen von bis zu 5 % ohne pathologisches Korrelat beobachtet werden. Es zeigte sich jedoch, dass eine spontane Verlängerung der Latenz um mehr als 15 % sowie eine abrupte Reduktion der Amplitude um mehr als 80 % als intraoperatives Warnsignal angesehen werden können. Die MKS unterliegt, ebenso wie andere intraoperative neurophysiologische Untersuchungsmethoden, technischen, anatomischen und neurophysiologischen Einschränkungen. Ein „Mapping” und „Monitoring” motorischer Funktionsareale mithilfe der MKS scheint einem bipolaren Untersuchungsaufbau jedoch mehr als nur gleichwertig zu sein. So dienen Potenzialveränderungen nicht nur als intraoperatives Warnsignal, sie haben auch prognostische Aussagekraft. Komplikationen wie epileptische Anfälle oder intraoperativ störende Massenbewegungen sind während der MKS nicht aufgetreten.

Abstract

The extent of brain tumour resection is limited by the risk of postoperative neurological deficits. For this reason, intraoperative neurophysiological examination techniques are indispensable for surgery in motor function regions. These methods are based on the electric excitability of the human cerebral cortex. Direct bipolar cortex stimulation, which has been routinely applied so far, is however limited due to the risk of epileptic seizures and intraoperative mass movements as well as the long examination times. This study on 184 cerebral interventions in eloquent motor areas of the brain examined whether reliable intraoperative localisation and monitoring of motor function centres is possible with monopolar cortex stimulation (MCS) as recently described by some authors. The aim was to investigate stimulation and recording parameters, as well as to answer the question whether there is a connection between intraoperative potential alterations, surgical manipulation and postoperative clinical symptoms. MCS-mapping of the motor cortex was successful in 91.8 % of the cases. Compound muscle action potentials (CMAPs) were recorded primarily from the thenar and the forearm flexors in accordance with the large representational area of the hand and forearm in the primary motor cortex of the brain. The most common successfully used stimulation parameters were: frequency 400 Hz; impulse sequence of 5 impulses; impulse duration 0.3 ms. The stimulation intensity was 15.3 ± 8.2 mA. Since the parameters examined during MCS-Monitoring (latency, potential width and amplitude) had such a wide variation range, individual latency fluctuations of up to 5 % were observed without a pathological correlate. However, it was found that a spontaneous prolongation of latency of more than 15 % and an abrupt amplitude reduction of more than 80 % should be considered as an intraoperative warning signal. Monopolar cortex stimulation is subject to technical, anatomical and neurophysiological restrictions just as other intraoperative neurophysiological examination methods. Nevertheless, mapping and monitoring motor function regions using monopolar cortex stimulation seem to be more than just equivalent to a bipolar study design. Potential alterations not only serve as an intraoperative warning signal but also have prognostic value. Complications like epileptic seizures or intraoperatively disturbing mass movements did not occur during monopolar cortex stimulation.

Literatur

  • 1 Fritsch G, Hitzig E. Über die elektrische Erregbarkeit des Grosshirns.  Arch Anat Physiol Wiss Med. 1870;  37 300-332
  • 2 Horsley V, Schäfer E A. Experimental researches in cerebral physiology: I. On the functions of the marginal convolution.  Proc R Soc Lond B Biol Sci. 1883 - 84;  36 437-442
  • 3 Horsley V, Schäfer E A. I. A record of experiments upon the functions of the cerebral cortex.  Philos Trans R Soc Lond Biol. 1888;  179 1-45
  • 4 Horsley V. Remarks on ten consecutive cases of operations upon the brain and cranial cavity to illustrate the details and safety of method employed.  Br J Med. 1887;  1 863
  • 5 Horsley V. The Croonian Lecture: On the mammalian nervous system, its functions and their localization, determined by an electrical method.  Philos Trans R Soc Lond B Biol. 1891;  182 267-326
  • 6 Gruenbaum A SF, Sherrington C. Observations on physiology of the cerebral cortex of some of the higher apes.  Proc R Soc Lond B Biol Sci. 1903;  72 152-209
  • 7 Cushing H. A note upon the faradic stimulation of central gyrus in conscious patients.  Brain. 1909;  32 42-53
  • 8 Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation.  Brain. 1937;  60 389-443
  • 9 Le Roux P, Berger M, Haglund M M, Pilchner W H, Ojeman G A. Resection of intrinsic tumors from nondominant face motor cortex using stimulation mapping: report of two cases.  Surg Neurol. 1991;  36 (1) 44-48
  • 10 Berger M S, Kincaid J, Ojemann G A, Lettich B A. Brain mapping techniques to maximize resection, safety and seizure control in children with brain tumors.  Neurosurgery. 1989;  25 786-792
  • 11 Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: Technical description.  Neurosurgery. 1993;  32 219-226
  • 12 Cedzich C, Taniguchi M, Schäfer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region.  Neurosurgery. 1996;  38 962-970
  • 13 Nuwer M R. Localization of motor cortex with median nerve somatosensory evoked potentials. In: Schramm J, Møller A (eds) Intraoperative Neurophysiological Monitoring in Neurosurgery. Berlin; Springer-Verlag 1991: 35-41
  • 14 Weir B, Grace M. The relative significance of factors affecting postoperative survival in astrocytomas, grades one and two.  Can J Neurol Sci. 1976;  3 47-50
  • 15 Weir B. The relative significance of factors affecting postoperative survival in astrocytomas, grades 3 and 4.  J Neurosurg. 1973;  38 448-452
  • 16 Hirakawa K, Suzuki K, Ueda S, Nakawa Y, Yoshino E, Ibayashi N. Multivariate analysis of factors affecting postoperative survival in malignant astrocytomas.  J Neurooncol. 1984;  12 331-340
  • 17 Ammirati M, Vick N, Liao Y, Ciric I, Mikhael M. Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas.  Neurosurgery. 1987;  21 201-206
  • 18 Ciric I, Ammirati M, Vick N, Mikhael M. Supratentorial gliomas: surgical considerations and immediate postoperative results. Gross total resection versus partial resection.  Neurosurgery. 1987;  21 21-26
  • 19 Ojemann J G, Miller J W, Silbergeld D L. Preserved function in brain invaded by tumor.  Neurosurgery. 1996;  39 253-258
  • 20 Skirboll S S, Ojemann G A, Berger M S, Lettich E, Winn H R. Functional cortex and subcortical white matter located within gliomas.  Neurosurgery. 1996;  38 678-684
  • 21 Ebeling U, Schmid U, Reulen H J. Tumour surgery within the central motor strip: surgical results with aid of electrical motor cortex stimulation.  Acta Neurochir (Wien). 1990;  101 101-107
  • 22 Ebeling U, Schmid U D, Ying H, Reulen H J. Safe surgery of lesions near the motor cortex using intra-operative mapping techniques: A report on 50 patients.  Acta Neurochir (Wien). 1992;  119 23-28
  • 23 Wunderlich G, Knorr U, Herzog H, Kiwit J CW, Freund H J, Seitz R. Precentral glioma location determines the displacement of cortical hand representation.  Neurosurgery. 1998;  42 18-27
  • 24 Atlas S W, Howard R S, Maldjian J, Alsop D, Detre J A, Listerud J, D'Esposito M, Judy K D, Zager E, Stecker M. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: Findings and implications for clinical managements.  Neurosurgery. 1996;  38 329-338
  • 25 Mueller W M, Yetkin F Z, Hammeke T A, Morris G L, Swanson S J, Reichert K, Cox R, Haughton V M. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors.  Neurosurgery. 1996;  39 515-520
  • 26 Yousry T A, Schmid U D, Schmidt D, Hagen T, Jassoy A G, Reiser M F. The central sulcal vein: A landmark for identification of the central sulcus using functional magnetic imaging.  J Neurosurg. 1996;  85 608-617
  • 27 Sabatini U, Pantano P, Brughitta G, Celli P, Ricci M, Lenzi G, Bozzao L. Presurgical integrated MRI/SPECT localization of the sensorimotor cortex in a patient with a low-grade astrocytoma in the rolandic area.  Neuroreport. 1995;  29 105-108
  • 28 Goldring S, Gregorie E M. Surgical management of epilepsy using edidural recordings to localize the seizure focus.  J Neurosurg. 1984;  60 457-466
  • 29 Goldring S. A method for surgical management of focal epilepsy, especially as it relates to children.  J Neurosurg. 1978;  49 344-356
  • 30 Aiba T, Seki Y. Intraoperative identification of the central sulcus: a practical method.  Acta Neurochir Suppl (Wien). 1988;  42 22-26
  • 31 Allison T, McCarthy G, Wood C C, Darcey T M, Spencer D D, Williamson P D. Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity.  J Neurophysiol. 1989;  62 694-710
  • 32 Allison T. Localization of sensorimotor cortex in neurosurgery by recording of somatosensory evoked potentials.  Yale J Biol Med. 1987;  60 143-150
  • 33 Cracco R Q, Bickford R G. Somatomotor and somatosensory evoked responses. Median nerve stimulation in man.  Arch Neurol. 1968;  18 52-68
  • 34 Desmedt J E, Chéron G. Somatosensory evoked potentials in man: subcortical and cortical components and their neural basis.  Ann NY Acad Sci. 1982;  388 388-411
  • 35 Lüders H, Lesser R P, Hahn J. Cortical somatosensory evoked potentials in response to hand stimulation.  J Neurosurg. 1983;  58 885-894
  • 36 Wood C, Spencer D, Allison T, McCarthy G, Williamson P, Goff W. Localisation of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials.  J Neurosurg. 1988;  68 99-111
  • 37 Woolsey C N, Erickson T C. Study of the postcentral gyrus of man by the evoked potential technique.  Trans Am Neurol Assoc. 1950;  75 50-52
  • 38 King R B, Schell G R. Cortical localization and monitoring during cerebral operations.  J Neurosurg. 1987;  67 210-219
  • 39 Hern E C, Landgren S, Philips C G, Porter R. Selective excitation of corticofugal neurones by surface-anodal stimulation of the baboon's motor cortex.  J Physiol. 1962;  161 73-90
  • 40 Rank J B. Which elements are excited in electrical stimulation of mammalian central nervous system: a review.  Brain Res. 1975;  98 417-440
  • 41 Landgren S, Phillips C G, Porter R. Minimal synaptic actions of pyramidal impulses on some alpha-motoneurons of the baboon's hand and forearm.  J Physiol (Lond). 1962;  161 91-111
  • 42 Berger M S, Cohen W A, Ojemann G A. Correlation of motor cortex brain mapping data with magnetic resonance imaging.  J Neurosurg. 1990;  72 383-387
  • 43 Kombos T, Suess O, Funk T, Kern B C, Brock M. Intra-operative mapping of the motor cortex during surgery in and around the motor cortex.  Acta Neurochir (Wien). 2000;  142 263-268
  • 44 Kombos T, Suess O, Brock M. Intraoperative functional mapping of the motor cortex: A review.  Neurosurgery Quarterly. 2000;  10 (4) 311-315
  • 45 Kombos T, Süss O, Ciklatekerlio Ö, Brock M. Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex.  J Neurosurg. 2001;  95 608-614
  • 46 Cedzich C, Pechstein U, Schramm J, Schäfer S. Electrophysiological considerations regarding electrical stimulation of motor cortex and brain stem in humans.  Neurosurgery. 1998;  42 527-532
  • 47 Agnew W, McCreery D. Considerations for safety in the use of electrical stimulation for motor evoked potentials.  Neurosurgery. 1987;  20 143-147
  • 48 Day B L, Rothwell J C, Thompson P D, Dick J PR, Cowan J MA, Barardelli A, Marsden C D. Motor cortex stimulation in intact man. 2. Multiple descending volleys.  Brain. 1987;  110 1191-1209
  • 49 Milner-Brown S H, Girvin J, Brown W. The effect of motor cortical stimulation on the excitability of spinal motoneuron in man.  Can J Neurol Sci. 1975;  244 245-253
  • 50 Penfield W. Ferrier lecture: some observations on cerebral cortex of man.  Proc Roy Soc Lond B Biol. 1947;  134 329-347
  • 51 Yousry T A, Schmid U D, Jassoy A G. Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery.  Radiology. 1995;  195 23-29
  • 52 Angel A, LeBeau F. A comparison of the effects of propofol with other anesthetic agents on the centripetal transmission of sensory information.  Gen Pharmacol. 1992;  23 945
  • 53 Calancie B, Klose J, Baier S, Green B A. Isoflurane-induced attenuation of motor evoked potentials caused by electrical motor cortex stimulation during surgery.  J Neurosurg. 1991;  74 897-904
  • 54 Sloan T B, Koht A. Depression of cortical somatosensory evoked potentials by nitrous oxide.  Br J Anesth. 1985;  57 849-852
  • 55 Koht A, Schutz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidat, midazolam and thiopental on median nerve somatosensory evoked potentials and die additive effects of fentanyl and nitrous oxide.  Anesth Analg. 1988;  67 435
  • 56 Zentner J, Kiss I, Ebner A. Influence of anesthetics - nitrous oxide in particular - on electromyographic response evoked by transcranial electrical stimulation of the cortex.  Neurosurgery. 1989;  24 253-256
  • 57 Sloan T B, Fugina M L, Toleikis J R. Effects of midazolam on median nerve somatosensory evoked potentials.  Br J Anaesth. 1990;  64 590
  • 58 Russ W, Thiel A, Schwandt H J, Hempelmann G. Somatosensorisch evozierte Potentiale unter Thiopental und Etomidate.  Anaesthesist. 1986;  35 679
  • 59 Scheufler K M, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data.  J Neurosurg. 2002;  96 571-579
  • 60 Abou-Madi M, Trop D, Lenis S, Olivier A, Leblanc R. Selective neuromuscular blockade for intraoperative electrocorticography.  Appl Neurophysiol. 1987;  50 386-389

Dr. med. Olaf Süss

Neurochirurgische Klinik · Universitätsklinikum Benjamin Franklin · Freie Universität Berlin

Hindenburgdamm 30

12200 Berlin

Email: olaf.suess@medizin.fu-berlin.de

    >