Synlett 2003(14): 2123-2128  
DOI: 10.1055/s-2003-42108
LETTER
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective Ruthenium-Catalyzed [2+2] Cycloadditions between Bicyclic Alkenes and a Chiral Propargylic Alcohol and its Derivatives

Karine Villeneuve, Robert W. Jordan, William Tam*
Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
Fax: +1(519)7661499; e-Mail: wtam@uoguelph.ca;
Further Information

Publication History

Received 25 September 2003
Publication Date:
29 October 2003 (online)

Abstract

Diastereoselective ruthenium-catalyzed [2+2] cyclo­additions of symmetrical bicyclic alkenes and a chiral propargylic alcohol or its derivatives were investigated. The cycloadditions were found to be highly chemo- and stereoselective giving anti-exo-cycloadducts in moderate to good yields. Diastereoselectivities of 58:42 to 84:16 were observed with chiral propargylic alcohol 2f and its derivatives 2a-g.

    References

  • 1a Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Paquette LA. Pergamon; Oxford: 1991.  Chap. 1-9.
  • 1b Advances in Cycloaddition   Vol. 1-6:  JAI Press; Greenwich: 1988-1999. 
  • For reviews on transition metal-catalyzed cycloadditions, see:
  • 2a Lautens M. Klute W. Tam W. Chem. Rev.  1996,  96:  49 
  • 2b Hegedus LS. Coord. Chem. Rev.  1997,  161:  129 
  • For representative examples of transition metal-catalyzed cycloadditions, see:
  • 3a For [4+2] cycloadditions: Jolly RS. Luedtke G. Sheehan D. Livinghouse T. J. Am. Chem. Soc.  1990,  112:  4965 
  • 3b McKinstry L. Livinghouse T. Tetrahedron  1994,  50:  6145 
  • 3c See also: Wender PA. Jenkins TE. Suzuki S. J. Am. Chem. Soc.  1995,  117:  1843 
  • 3d Wender PA. Smith TE. Tetrahedron  1998,  54:  1255 
  • 3e For [5+2] cycloadditions: Wender PA. Takahashi H. Witulski B. J. Am. Chem. Soc.  1995,  117:  4720 
  • 3f Wender PA. Fuji M. Husfeld CO. Love JA. Org. Lett.  1999,  1:  137 
  • 3g Trost BM. Shen HC. Org. Lett.  2000,  2:  2523 
  • 3h Wender PA. Barzilay CM. Dyckman AJ. J. Am. Chem. Soc.  2001,  123:  179 
  • 3i For [4+4] cycloadditions: Wender PA. Ihle NC. J. Am. Chem. Soc.  1986,  108:  4678 
  • 3j For [6+2] cycloadditions: Wender PA. Correa AG. Sato Y. Sun R. J. Am. Chem. Soc.  2000,  122:  7815 
  • 4 Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Paquette LA. Pergamon; Oxford: 1991.  Chap. 2.
  • 5 The Conservation of Orbital Symmetry   Woodward R. B., Hoffmann R., Academic Press; New York: 1970. 
  • 6 Crimmins MT. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Paquette LA. Pergamon; Oxford: 1991.  p.123 
  • 7 Baldwin JE. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Paquette LA. Pergamon; Oxford: 1991.  p.63 
  • 8a Narasaka K. Hayashi Y. Iwasawa N. Sakurai H. Chem. Lett.  1989,  1581 
  • 8b Engler TA. Letavic MA. Reddy JP. J. Am. Chem. Soc.  1991,  113:  5068 
  • 8c Mitani M. Sudoh T. Koyama K. Bull. Chem. Soc. Jpn.  1995,  68:  1683 
  • 8d Knolker HJ. Baum E. Schmitt O. Tetrahedron Lett.  1998,  39:  7705 
  • 9a Mitsudo T. Kokuryo K. Shinsugi T. Nakagawa Y. Watanabe Y. Takegami Y. J. Org. Chem.  1979,  44:  4492 
  • 9b Mitsudo T. Naruse H. Hori Y. Watanabe Y. J. Organomet. Chem.  1987,  334:  157 
  • 9c Trost BM. Yanai M. Hoogsteen K. J. Am. Chem. Soc.  1993,  115:  5294 
  • 9d Mitsudo T. Naruse H. Kondo T. Ozaki Y. Watanabe Y. Angew. Chem., Int. Ed. Engl.  1994,  33:  580 
  • 9e Yi CS. Lee DW. Chen Y. Organometallics  1999,  18:  2043 
  • 9f Huang D.-J. Rayabarapu DK. Li L.-P. Sambaiah T. Cheng C.-H. Chem.-Eur. J.  2000,  6:  3706 
  • 9g Jordan RW. Tam W. Org. Lett.  2000,  2:  3031 
  • 9h Jordan RW. Tam W. Org. Lett.  2001,  3:  2367 
  • 9i Chao KC. Rayabarapu DK. Wang CC. Cheng CH. J. Org. Chem.  2001,  66:  8804 
  • 9j Jordan RW. Tam W. Tetrahedron Lett.  2002,  43:  6051 
  • 9k Shen Q. Hammond GB. J. Am. Chem. Soc.  2002,  124:  6534 
  • For recent reviews on asymmetric [2+2+1] cycloaddition, see:
  • 10a Ingate ST. Marco-Contellas J. Org. Prep. Proc. Int.  1998,  30:  121 
  • 10b Buchwald SL. Hicks FA. In Comprehensive Asymmetric Catalysis   Vol. 2:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999.  p.491-510  
  • 11a Lautens M. Tam W. Lautens JC. Edwards LE. Crudden CM. Smith AC. J. Am. Chem. Soc.  1995,  117:  6863 
  • 11b Lautens M. Tam W. In Advances in Metal-Organic Chemistry   Vol. 6:  Liebeskind LS. JAI Press; Greenwich: 1998.  p.49-101  
  • 12 Lautens M. Tam W. Sood C. J. Org. Chem.  1993,  58:  4513 
  • 13 For an example on a diastereoselective metal catalyzed [2+2] cycloaddition between two alkenes, see: Baik TG. Luis L. Wang LC. Krische MJ. J. Am. Chem. Soc.  2002,  124:  6534 
  • 14 Chetcuti MJ. McDonal SR. Organometallics  2002,  21:  3162 ; and references cited therein
  • 15 For an example, see: Lautens M. Crudden CM. Organometallics  1989,  8:  2733 ; see also ref. 11a
  • For the synthesis of NBD 8a and 8b, see:
  • 17a Tranmer GK. Yip C. Handerson S. Jordan RW. Tam W. Can. J. Chem.  2000,  78:  527 
  • 17b Michieletto I. Fabris F. De Lucchi O. Tetrahedron: Asymmetry  2000,  11:  2835 
  • For the synthesis of NBD 8c and 8d, see:
  • 18a Story PR. J. Org. Chem.  1961,  26:  287 
  • 18b Story PR. Fahrenholtz SR. Org. Synth., Coll. Vol. V   Wiley and Sons; New York: 1973.  p.151 
16

Representative Experimental: (i) Ru-catalyzed [2+2] cycloadditions between 5 and 2f (Table [2] , entry 10): A mixture of norbornadiene 5 (164 µL, 1.52 mmol), alkyne 2f (71.8 mg, 0.51 mmol), and THF (0.3 mL) in an oven-dried vial was added via a cannula to an oven-dried screw-cap vial containing Cp*RuCl(COD) (weighed out from a dry box, 11.6 mg, 0.0305 mmol) under nitrogen. The oven-dried vial was rinsed with THF (0.3 mL). The reaction mixture was stirred in the dark at 25 ºC for 72 h. The crude product was purified by column chromato-graphy (EtOAc:hexanes = 1:9) to give an inseparable mixture of diastereoisomers 6f and 7f (107.5 mg, 0.459 mmol, 90%, 6f:7f (dr) = 82:18 measured by 1H NMR and GC) as a colorless oil. Rf = 0.42 (EtOAc:hexanes = 1:4); GC (HP-1 column): retention time for major isomer = 17.23 min, retention time for minor isomer = 17.35 min. IR (CH2Cl2): 3428 (br s), 3067 (w), 2983 (m), 1722 (s), 1675 (m), 1370 (m), 267 (s) cm-1. 1H NMR (400 MHz, CDCl3):
δ = 6.17 (dd, 1 H, J = 5.1, 3.0 Hz), 6.11 (dd, 1 H, J = 5.5, 2.9 Hz), 5.16 (br s, 0.18 H), 5.09 (br s, 0.82 H), 4.58 (q, 1 H, J = 6.8 Hz), 4.22 (q, 2 H, J = 7.1 Hz), 2.63 (br s, 1 H), 2.59 (br s, 0.18 H), 2.51 (br s, 0.82 H), 2.44 (m, 1 H), 2.33 (m, 1 H), 1.29-1.40 (m, 8 H). 13C NMR (100 MHz, APT, CDCl3): major diastereomer δ = 170.2, 164.2, 136.3, 135.3, 131.4, 65.7, 60.8, 43.8, 42.3, 39.7, 38.6, 37.9, 21.3, 14.2; minor diastereomer δ = 170.2, 164.2, 136.4, 135.2, 131.4, 67.4, 60.8, 44.1, 42.4, 39.5, 38.7, 38.5, 21.6, 14.2. HRMS calcd for C14H18O3: m/z = 234.1256. Found: m/z = 234.1246.
(ii) Ru-catalyzed [2+2] cycloadditions between 1 and 2f (Table [1] , entry 9): A mixture of norbornene 1 (159 mg, 1.69 mmol), alkyne 2f (80 mg, 0.56 mmol), and THF (0.3 mL) in an oven-dried vial was added via a cannula to an oven-dried screw-cap vial containing Cp*RuCl(COD) (weighed out from a dry box, 13.3 mg, 0.035 mmol) under nitrogen. The oven-dried vial was rinsed with THF (0.3 mL). The reaction mixture was stirred in the dark at r.t. for 72 h. The crude product was purified by column chromatography (EtOAc:hexanes = 1:19) to give an inseparable mixture of cycloadducts 3f and 4f (111 mg, 0.474 mmol, 84%, dr = 5.2:1 measured by 1H NMR and GC) as a yellow oil.
Rf = 0.40 (EtOAc:hexanes = 1:4); GC (HP-1 column): retention time for major isomer = 17.23 min, retention time for minor isomer = 17.35 min. IR (CH2Cl2): 3391 (br m), 2958 (s), 2871 (m), 1740 (m), 1721 (s)1679 (s), 1037 (s)
cm-1. 1H NMR (400 MHz, CDCl3): δ = 5.15 (q, 0.2 H, J = 5.4 Hz), 5.09 (q, 0.8 H, J = 4.2 Hz), 4.44-4.50 (m, 1 H), 2.55 (br s, 1 H), 2.43 (m, 1 H), 2.16 (br s, 1 H), 2.12 (br s, 0.2 H), 2.02 (br s, 0.8 H), 1.57 (m, 2 H), 1.28-1.35 (m, 7 H), 1.01-1.09 (m, 3 H). 13C NMR (100 MHz, APT, CDCl3): major diastereomer δ = 168.0, 164.2, 129.0, 65.4, 60.7, 47.0, 45.5, 34.0, 33.4, 30.5, 28.0, 27.8, 21.3, 14.2; minor diastereomer
δ = 167.9, 164.2, 129.0, 67.1, 60.7, 47.6, 45.6, 34.1, 33.8, 30.4, 28.0, 21.7, 14.2. HRMS calcd for C14H20O3: m/z = 236.1412. Found: m/z = 236.1383.
(iii) Oxidation of the diastereomeric cycloadducts 3f/4f to the enantiomerically enriched product 11 (Scheme [2] ): To a solution of the diastereomeric cycloadducts 3f/4f (58.0 mg, 0.2455 mmol) in CH2Cl2 (1.5 mL) was added pyridinium dichromate (0.1402 g, 0.3727 mmol). The reaction was stirred at r.t. for 48 h. The amount of 2 mL of Et2O was then added, and the mixture was passed through a plug of silica gel. The solvent was evaporated and the product was purified by column chromatography (EtOAc:hexanes = 3:7) to give 11 (27.0 mg, 0.1154 mmol, 47%) as a colorless oil. Rf = 0.54 (EtOAc:hexanes = 3:7). [α]D 23 -17.8 (c 0.925, CHCl3, 62 ee% determined by HPLC). IR (CH2Cl2): 2960 (s), 2873 (s), 1716 (s), 1669 (s), 1615 (m), 1366 (m), 1260 (m) cm-1. HPLC (OJ-H column, 0.75 mL/min, 1% i-PrOH/Hexane, 254 nm): major enantiomer = 7.52 min; minor enantiomer = 8.01 min. 1H NMR (400 MHz, CDCl3): δ = 4.24 (q, 2 H, J = 7.1 Hz), 2.62 (s, 2 H), 2.48 (s, 3 H), 2.23 (br s, 2 H), 1.60 (m, 2 H), 1.32 (t, 3 H, J = 7.1 Hz), 1.23 (dm, 1 H, J = 10.7 Hz), 1.12 (m, 2 H), 1.04 (dm, 1 H, J = 10.7 Hz). 13C NMR (100 MHz, APT, CDCl3): δ = 195.4, 161.4, 149.9, 139.5, 60.8, 46.42, 46.36, 33.9, 33.8, 30.4, 29.5, 28.0, 27.9, 14.1. Anal. Calcd for C14H18O3: C, 71.77; H, 7.74. Found: C, 71.98; H, 7.55.