Horm Metab Res 2003; 35(7): 444-450
DOI: 10.1055/s-2003-41627
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Plasma Insulin and Glucagon Concentrations and Biochemical Variables in Regularly Menstruating Females with Ovulatory and Anovulatory Menstrual Cycles

G.  Lutosławska1 , E.  Skierska2 , A.  Kęska2 , E.  Byszewska-Szpocińska3
  • 1Department of Biochemistry, Academy of Physical Education, Warsaw, Poland
  • 2Department of Biology, Academy of Physical Education, Warsaw, Poland
  • 3Department of Radioimmunology, Radioisotope Centre POLATOM, Otwock-Swierk, Poland
Further Information

Publication History

Received 14 November 2002

Accepted after Revision 14 April 2003

Publication Date:
21 August 2003 (online)

Abstract

Ovarian hormones are known to affect endocrine pancreas function. However, data concerning the effects of anovulatory menstrual cycles in regularly menstruating women on endocrine pancreas and blood metabolites are lacking. We examined plasma insulin, glucagon, glucose, lactate, urea and glycerol concentrations in reproductive-age, regularly menstruating females classified as ovulating or non-ovulating on the basis of basal body temperature measurements and plasma 17β-estradiol and progesterone determinations. All measurements were performed twice - in the follicular and again in the luteal phases of the menstrual cycle. There were no differences in plasma lactate and glycerol concentrations between the two groups of subjects. Plasma insulin concentrations tended to be lower in non-ovulating than in ovulating women. In addition, plasma glucagon did not differ in the follicular (33.2 pmol/l) or luteal phase of the menstrual cycle in females with disturbed ovarian hormone secretion (34.1 pmol/l). In contrast, plasma glucagon concentrations in the luteal phase (32.8 pmol/l) were significantly higher than in the follicular phase (24.9 pmol/l) of the menstrual cycle in ovulating women. Plasma glucose concentrations in the follicular phase of the menstrual cycle in non-ovulating women (4.1 mmol/l) were slightly but significantly lower than in their ovulating counterparts (5.3 mmol/l). Furthermore, no correlations were noted between plasma glucose and insulin-to-glucagon molar ratio in non-ovulating subjects. Plasma urea concentrations in non-ovulating women were markedly lower than in ovulating women in both follicular and luteal phases of the menstrual cycle (4.1 and 3.9 mmol/l vs. 5.3 and 5.4 mmol/l in non-ovulating and ovulating women, respectively). In ovulating women, plasma urea levels in both cycle phases were significantly correlated with plasma glucagon concentrations, but no such correlation was found in non-ovulating women. In conclusion, anovulatory menstrual cycles in premenopausal females slightly altered pancreatic hormone plasma levels but markedly impaired their action on plasma glucose and urea concentrations.

References

  • 1 Costin G, Kogut M D. Carbohydrate intolerance in gonadal dysgenesis: evidence for insulin resistance and hyperglucagonemia.  Horm Res. 1985;  22 260-269
  • 2 Grigorakis S I, Alevizaki M, Beis C, Anastasiou E, Alevizali C C, Souvatzoglou A. Hormonal parameters in gestational diabetes mellitus during the third trimester: high glucagon levels.  Gynecol Obstet Invest. 2000;  49 106-109
  • 3 Mardsen P J, Murdoch A P, Taylor R. Adipocyte insulin action in hypogonadotrophic hypogonadism.  Human Reprod. 2000;  15 1672-1678
  • 4 Yildiz B O, Gedik O. Insulin resistance in polycystic ovary syndrome: hyperandrogenemia versus normoandrogenemia.  Eur J Obstet Gynecol Reprod Biol. 2001;  100 62-66
  • 5 Damario M A, Bogovich K, Liu H, Rosenwaks Z, Poretsky L. Synergistic effects of insulin-like growth factor-I and human chorionic gonadotropin in the rat ovary.  Metabolism. 2000;  49 314-320
  • 6 Ohtsuka S, Takaki S, Iseki M, Miyoshi K, Nakagata N, Kataoka Y, Yoshida N, Takatsu K, Yoshimura A. SH2-B is required for both male and female reproduction.  Mol Cell Biol. 2002;  22 3066-3077
  • 7 Gonzáles C, Alonso A, Alvarez N, Díaz F, Martínez M, Fernández S, Patterson A M. Role of 17β-estradiol and/or progesterone on insulin sensitivity in the rat: implications during pregnancy.  J Endocrinol. 2000;  166 283-291
  • 8 Moran C, Hernandez E, Ruiz J E, Fonesca M E, Bermudez J A, Zarate A. Upper body obesity and hyperinsulinemia are associated with anovulation.  Gynecol Obstet Invest. 1999;  47 1-5
  • 9 Cagnacci A, Soldani R, Carrieri P L, Paoletti A M, Fioretti P, Melis G B. Effects of low doses of transdermal 17β-estradiol on carbohydrate metabolism in postmenopausal women.  J Clin Endocrinol Metab. 1992;  74 1396-1400
  • 10 Gaspard U J, Wery O J, Scheen A J, Jaminet C, Lefebvre P J. Long-term effects of oral estradiol on carbohydrate metabolism in post-menopausal women.  Climacteric. 1999;  2 93-100
  • 11 Diamond M P, Grainger D A, Rossi G, Connoly-Diamond M, Sherwin R S. Counter-regulatory response to hypoglycemia in the follicular and luteal phases of the menstrual cycle.  Fertil Steril. 1993;  60 988-993
  • 12 Escalante Pulido J M, Alpizar Salazar M. Changes in insulin sensitivity, secretion and glucose effectiveness during menstrual cycle.  Arch Med Res. 1999;  30 19-22
  • 13 Thorton K L, Defronzo R A, Sherwin R S, Diamond M P. Micronized estradiol and progesterone: effects on carbohydrate metabolism in reproductive-age women.  J Soc Gynecol Invest. 1995;  2 643-652
  • 14 Chen E C, Brzyski R G. Exercise and reproductive dysfunction.  Fertil Steril. 1999;  71 -6
  • 15 Ferrin M. Stress and the reproductive system.  J Clin Endocrinol Metab. 1999;  84 1768-1774
  • 16 Hackney A C, McCracken-Compton M A, Ainsworth B. Substrate responses to submaximal exercise in the midfollicular and midluteal phases of the menstrual cycle.  Int J Sport Nutr. 1994;  4 299-308
  • 17 Broocks A, Pirke K M, Schweiger U, Tuschl R J, Laessle R G, Strowitzki T, Hörl E, Hörl T, Haas W, Jeschke D. Cyclic ovarian function in recreational athletes.  J Appl Physiol. 1990;  68 2083-2086
  • 18 El Seifi S, Green I C, Perrin D. Insulin release and steroid-hormone binding in isolated islets of Langerhans in the rat: effects of ovariectomy.  J Endocrinol. 1981;  90 59-67
  • 19 Gower B A, Nagy T R, Blaylock M L, Wang C, Nyman L. Estradiol may limit lipid oxidation via CPT I expression and hormonal mechanism.  Obes Res. 2002;  10 167-172
  • 20 Mandour T, Kissebah A H, Wynn V. Mechanism of oestrogen and progesterone effects on lipid and carbohydrate metabolism alteration in the insulin: glucagon molar ratio and hepatic enzyme activity.  Eur J Clin Invest. 1977;  7 181-187
  • 21 Faure A, Haouari M, Sutter B C. Short term and direct influence of oestradiol on glucagon secretion stimulated by arginine.  Diabetes Metab. 1988;  14 452-454
  • 22 Nielsen J H. Direct effect of gonadal and contraceptive steroids on insulin release from mouse pancreatic islets in organ culture.  Acta Endocrinol (Copenh). 1984;  105 245-250
  • 23 Swislocki A, Burgie E S, Rodnick K J. Effects of ovariectomy on indices of insulin resistance, hypertension, and cardiac energy metabolism in middle-aged spontaneously hypertensive rats (SHR).  Horm Metab Res. 2002;  34 516-522
  • 24 Ashby J P, Shirling D, Baird J D. Effect of progesterone on the secretion and peripheral action of insulin and glucagon in the intact rat.  J Endocrinol. 1981;  88 49-55
  • 25 Doglioni C, Gambacorta M, Zamboni G, Coggi G, Viale G. Immunochemical localization of progesterone receptors in endocrine cells of the human pancreas.  Am J Pathol. 1990;  137 999-1005
  • 26 Peiris A N, Mueller R A, Smith G A, Struve M F, Kissebah A H. Splanchnic insulin metabolism in obesity.  J Clin Invest. 1986;  78 1648-1657
  • 27 Tanjoh K, Tomita R, Mera K, Hayashi N. Metabolic modulation by concomitant administration of insulin and glucagon in pancreatectomy patients.  Hepatogastroenterology. 2002;  49 538-543
  • 28 Corsmitt E P, Romijn J A, Sauerwein H P. Regulation of glucose production with special attention to nonclassical regulatory mechanism; a review.  Metabolism. 2001;  50 742-755
  • 29 Nonogaki K, Iguchi A. Role of central neural mechanism in the regulation of hepatic glucose metabolism.  Life Sci. 1997;  60 797-807
  • 30 Ibanez L, Valls C, Ferrer A, Ong K, Dunger D B, Zegher F. Additive effects of insulin-sensitizing and anti-androgen treatment in young non-obese women with hyperinsulinism, hyperandrogenism, dyslipidemia and anovulation.  J Clin Endocrinol Metab. 2002;  87 2870-2874
  • 31 Carraro F, Kimbrough T D, Wolfe R R. Urea kinetics in humans at two levels of exercise intensity.  J Appl Physiol. 1993;  75 1180-1185
  • 32 Moran B J, Jackson A A. 15N-urea metabolism in the functioning human colon: luminal hydrolysis and mucosal permeability.  Gut. 1990;  31 454-457
  • 33 Nissim I, Horyn O, Daikhin Y, Nissim I, Lazarow A, Yudkoff M. Regulation of urea synthesis by agmatine in the perfused liver: studies with 15N.  Am J Physiol. 2002;  283 E1123-E1134
  • 34 Forslund A H, Hambraeus L, Olsson R M, El-Khoury A E, Yu Y M, Young V R. The 24-h whole body leucine and urea kinetics at normal and high protein intakes with exercise in healthy adults.  Am J Physiol. 1998;  275 E310-E320
  • 35 MacSearraigh E MJ, Kallmeyer J C, Schiff H B. Acute renal failure in marathon runners.  Nephron. 1979;  24 240
  • 36 Young V R, Marchini J S. Mechanism and nutritional significance of metabolic responses to altered intakes or protein and amino acids with reference to nutritional adaptation in humans.  Am J Clin Nutr. 1990;  51 270-289
  • 37 Ivarsen P, Greisen J, Vilstrup H. Acute effects of moderate dehydration on the hepatic conversion of amino nitrogen into urea nitrogen in healthy men.  Clin Sci (Lond). 2001;  101 339-344
  • 38 Boden G, Tappy L, Jadali F, Hoeldke R D, Rezwani I, Owen O E. Role of glucagon in disposal of amino acid load.  Am J Physiol. 1990;  259 E225-E232
  • 39 Flakoll J, Borel M J, Wentzel L S, Williams P E, Lacy D B, Abumard N N. The role of glucagon in the control of protein and amino acid metabolism in vivo.  Metabolism. 1994;  43 1509-1516
  • 40 Groen A K, van Roermund C W, Vervoorn R C, Tager J M. Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon.  Biochem J. 1986;  237 379-389
  • 41 Brosnan J T. Glutamate, at the interface between amino acid and carbohydrate metabolism.  J Nutr. 2000;  130 (Suppl 4S) 88S-990S
  • 42 Chibber V l, Soriano C, Tayek J A. Effects of low-dose and high-dose glucagon on glucose production and gluconeogenesis in humans.  Metabolism. 2000;  49 39-46
  • 43 Yang D, Brunengraben H. Glutamate, a window on liver intermediary metabolism. J.  Nutr. 2000;  (Suppl 4S) 991S-994S
  • 44 Hartl W H, Miyoshi H, Jahoor F, Klein S, Elahi D, Wolfe R. Bradykinin attenuates glucagon-induced leucine oxidation in humans.  Am J Physiol. 1990;  259 E239-E245
  • 45 Kalhan S C, Rossi K Q, Gruca L L, Super D M, Savin S M. Relation between transamination of branched-chain amino acids and urea synthesis: evidence from human pregnancy.  Am J Physiol. 1998;  275 E423-E431
  • 46 Morris S M. Regulation of enzymes of the urea cycle and arginine metabolism.  Annu Rev Nutr. 2002;  22 87-105
  • 47 Ang B C, Halliday D, Powell-Tuck J. Whole-body protein turnover in response to hyperinsulinemia in humans postabsorptively with [15N]-glycine as tracer.  Am J Clin Nutr. 1995;  61 1062-1066
  • 48 Cersosimo E, Garlic P, Ferretti J. Regulation of splanchnic and renal substrate supply by insulin in humans.  Metabolism. 2000;  49 676-683
  • 49 Edgerton D S, Caridn S, Emshwiller M, Neal D, Chandramouli V, Schuman W C, Landau B R, Rossetti L, Cherrington A D. Small increases in insulin inhibit hepatic glucose production solely caused by an effect on glycogen metabolism.  Diabetes. 2001;  50 1872-1882
  • 50 Edgerton D S, Cardin S, Pan C, Neal D, Farmer B, Converse M, Cherrington A D. Effects of insulin deficiency or excess on hepatic gluconeogenic flux during glycogenolytic inhibition in the conscious dog.  Diabetes. 2002;  51 3151-3162
  • 51 Kelley K M, Hamann J J, Navarre C h, Gladden L B. Lactate metabolism in resting and contracting canine skeletal muscle with elevated lactate concentration.  J Appl Physiol. 2002;  93 865-872
  • 52 Hellström L, Reynisdottir S. Influence of heredity for obesity on adipocyte lipolysis in lean and obese subjects.  Int J Obes. 2000;  24 340-344
  • 53 Bertin E, Arner P, Bolinder J, Hagström-Toft E. Action of glucagon and glucagon-like peptide-1-(7 - 36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo.  J Clin Endocrinol Metab. 2001;  86 1229-1234

G. Lutosławska

Department of Biochemistry · Academy of Physical Education

01-968 Warsaw 45 · Box 55 · Poland

Fax: +1033 (22) 865-10-80

Email: grazyna.lutoslawska@awf.edu.pl