Sprache · Stimme · Gehör 2003; 27(2): 71-74
DOI: 10.1055/s-2003-40253
Schwerpunktthema
© Georg Thieme Verlag Stuttgart · New York

Zum stimmlichen Ausdruck emotionaler Zustände. Eine vergleichend verhaltens- und neurobiologische Untersuchung

On the Vocal Expression of Emotional States. A Comparative Ethological and Neurobiological StudyU. Jürgens1
  • 1Deutsches Primatenzentrum, Göttingen
Further Information

Publication History

Publication Date:
25 June 2003 (online)

Zusammenfassung

Transkulturelle Ähnlichkeiten in den emotionalen Intonationen beim Sprechen und die Existenz verschiedener nicht-verbaler emotionaler Lautäußerungen bei taubgeborenen Kindern sprechen dafür, dass das stimmliche emotionale Ausdrucksverhalten zum großen Teil angeboren ist. Ähnlichkeiten in den emotionalen Lautmustern zwischen Mensch und Affe sprechen außerdem dafür, dass dieses Ausdrucksverhalten ein hohes stammesgeschichtliches Alter besitzt. Diese Gemeinsamkeiten erlauben es, Affenlaute als Modell für die Untersuchung der neurobiologischen Grundlagen menschlicher emotionaler Lautäußerungen zu verwenden. Untersuchungen am Totenkopfaffen (Saimiri sciureus) haben gezeigt, dass die emotionale Stimmkontrolle hierarchisch organisiert ist. Auf der untersten Stufe stehen die phonatorischen Motoneurone und die diese Motoneurone koordinierenden Prämotorneurone der Formatio reticularis von Pons und Medulla. Die Ankoppelung von emotionalem Zustand und vokalmotorischem Koordinationsmechanismus geschieht über das periaquädukte Grau des Mittelhirns. Die Willkürkontrolle emotionaler Lautäußerungen erfolgt im Wesentlichen über den vorderen cingulären Kortex.

Abstract

Transcultural similarities in emotional intonation as well as the existence of numerous non-verbal emotional vocal utterances in deaf-born infants suggest that the vocal expression of emotional states is to a large extent innate. The fact that there are even similarities between human emotional utterances and monkey calls in comparative emotional situations, makes clear that the emotional vocal expression in humans has deep-reaching phylogenetic roots. The homologous nature of human emotional vocalization and monkey calls justifies the use of monkey calls as models in the study of the neurobiological basis of human emotional vocalization. Experiments in the squirrel monkey (Saimiri sciureus) have shown that the neural control of vocalization is organized hierarchically. The lowest level is represented by the phonatory motor neurones and the coordinating premotor neurones in the reticular formation of pons and medulla. The next higher level is represented by the periaqueductal grey of the midbrain which is responsible for the coupling of emotional states to the vocal motor-coordinating network. The highest level is represented by the anterior cingulate cortex which is involved in the voluntary control of emotional vocal utterances.

Literatur

  • 1 Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs.  Proceed Nat Acad Sci. 1995;  92 532-536
  • 2 Schrader L, Hammerschmidt K. Computer-aided analysis of acoustic parameters in animal vocalizations: a multi-parametric approach.  Bioacoustics. 1997;  7 247-265
  • 3 Jürgens U. Vocalization as an emotional indicator. A neuroethological study in the squirrel monkey.  Behaviour. 1979;  69 88-117
  • 4 Hammerschmidt K, Freudenstein T, Jürgens U. Vocal development in squirrel monkeys.  Behaviour. 2001;  138 1179-1204
  • 5 Eibl-Eibesfeldt I. The expressive behaviour of the deaf-and-blind born. In: Von Cranach M, Vine I, eds Social Communication and Movement. London; Academic Press 1973: 163-194
  • 6 Jürgens U, Ploog D. Cerebral representation of vocalization in the squirrel monkey.  Exp Brain Res. 1970;  10 532-554
  • 7 Sutton D, Larson C, Lindeman R C. Neocortical and limbic lesion effects on primate phonation.  Brain Res. 1974;  71 61-75
  • 8 Jürgens U, von Cramon D. On the role of the anterior cingulate cortex in phonation: a case report.  Brain Lang. 1982;  15 234-248
  • 9 Jürgens U, Zwirner P. The role of the periaqueductal grey in limbic and neocortical vocal fold control.  Neuroreport. 1996;  7 2921-2923
  • 10 Jürgens U, Pratt R. Role of the periaqueductal grey in vocal expression of emotion.  Brain Res. 1979;  167 367-378
  • 11 Skultety F M. Experimental mutism in dogs.  Arch Neurol. 1962;  6 235-241
  • 12 Adametz J, O’Leary J L. Experimental mutism resulting from periaqueductal lesions in cats.  Neurology. 1959;  9 636-642
  • 13 Chaurand J P, Vergnes M, Karli P. Substance grise centrale du mésencéphale et comportement d’aggression interspécifique du rat.  Physiol Behav. 1972 ;  9  475-481
  • 14 Esposito A, Demeurisse G, Alberti B, Fabbro F. Complete mutism after midbrain periaqueductal gray lesion.  Neuroreport. 1999;  10 681-685
  • 15 Düsterhöft F, Häusler U, Jürgens U. On the search for the vocal pattern generator. A single-unit recording study.  Neuroreport. 2000;  11 2031-2034
  • 16 Lüthe L, Häusler U, Jürgens U. Neuronal activity in the medulla oblongata during vocalization. A single-unit recording study in the squirrel monkey.  Behav Brain Res. 2000;  116 197-210
  • 17 Thoms G, Jürgens U. Common input of the cranial motor nuclei involved in phonation in squirrel monkey.  Exp Neurol. 1987;  95 85-99

Prof. Dr. Uwe Jürgens

Deutsches Primatenzentrum

Kellnerweg 4

37077 Göttingen

Email: ujuerge@gwdg.de