Subscribe to RSS
DOI: 10.1055/s-2003-39289
Radical Cyclization Approach to Synthesis of Enantiopure Proline Derivatives
Publication History
Publication Date:
20 May 2003 (online)
Αbstract
β-Amino alcohols possessing a vinylsilane functionality were transformed into bicyclic derivatives via a diastereoselective 5-exo-trig radical cyclization. Straightforward transformation led to enantiopure proline derivatives.
Key words
diastereoselective radical cyclization - β-amino alcohols - proline derivatives
-
1a
Giese B.Kopping B.Göbel T.Dickaut J.Thoma G.Kulicke KJ.Trach F. Org. React. 1996, 48: 301 -
1b
Curran DP. In Comprehensive Organic Synthesis Vol. 4:Trost BM.Fleming I.Semmelhack MF. Pergamon Press; Oxford: 1991. p.779 -
1c
Jasperse P.Curran DP.Fevig TL. Chem Rev 1991, 91: 1237 -
1d
Aldabbagh F.Bowman WR. Contemp. Org. Synth. 1997, 261 -
1e
Bowman WR.Bridge CF.Brookes P. J. Chem. Soc. Perkin Trans 1 2000, 1 -
1f
Bowman WR.Cloonan MO.Krintel SL. J. Chem. Soc. Perkin Trans 1 2001, 2885 ; and references cited therein - For recent examples of synthesis of pyrrolidines via a radical cyclization, see:
-
2a
Besev M.Engman L. Org. Lett. 2000, 2: 1589 -
2b
Besev M.Engman L. Org. Lett. 2002, 4: 3023 -
2c
Rancourt J.Gorys V.Jolicoeur E. Tetrahedron Lett. 1998, 39: 5339 -
2d
Miyata O.Ozawa Y.Ninomiya I.Naito T. Tetrahedron 2000, 56: 6199 -
2e
Andrés C.Duque-Soladana JP.Pedrosa R. J. Org. Chem. 1999, 64: 4273 -
2f
Andrés C.Duque-Soladana JP.Pedrosa R. J. Org. Chem. 1999, 64: 4282 -
2g
Pedrosa R.Andrés C.Duque-Soladana JP.Mendiguchia P. Eur. J. Org. Chem. 2000, 3727 -
2h
Lee E.Kim SK.Kim JY.Lim J. Tetrahedron Lett. 2000, 41: 5915 -
2i
Suero R.Gorgojo JM.Aurrecoechea JM. Tetrahedron 2002, 58: 6211 -
3a
Soucy F.Wernic D.Beaulieu P. J. Chem. Soc. Perkin Trans. 1 1991, 2885 -
3b
Adlington RM.Mantell SJ. Tetrahedron 1992, 48: 6529 -
3c
Basak A.Bag SS.Rudra KR.Barman J.Dutta S. Chemistry Lett. 2002, 710 -
3d
Bowman WR.Broadhurst MJ.Coghlan DR.Lewis KA. Tetrahedron Lett. 1997, 38: 6301 -
3e
Esh PM.Hiemstra H.de Boer RF.Speckamp WN. Tetrahedron 1992, 48: 4659 -
3f
Osipov SN.Burger K. Tetrahedron Lett. 2000, 41: 5659 -
3g
Bryans JS.Large JM.Parsons AF. J. Chem. Soc. Perkin Trans. 1 1999, 2905 -
3h
Yuasa Y.Ando J.Shibuya S. J. Chem. Soc. Chem. Commun. 1994, 1383 - 4
Agami C.Comesse S.Kadouri-Puchot C. J. Org. Chem. 2002, 67: 1496 - 5
Agami C.Comesse S.Kadouri-Puchot C. J. Org. Chem. 2002, 67: 2424 - See, for example:
-
6a
Udding JH.Tuijp CJM.Hiemstra H.Speckamp WN. J. Chem. Soc. Perkin Trans. 2 1992, 857 -
6b
Choi J.-K.Hart DJ. Tetrahedron 1985, 41: 3959 -
6c
Kano S.Yuasa Y.Moshizuki N.Shibuya S. Heterocycles 1990, 30: 263 -
6d
Hart DJ.Tsai Y.-M. J. Am. Chem. Soc. 1984, 106: 8209 -
7a
Chatgilialoglu C.Griller D.Lesage M. J. Org. Chem. 1988, 53: 3641 -
7b
Ballestri M.Chatgilialoglu C.Clark KB.Griller D.Giese B.Kopping B. J. Org. Chem. 1991, 56: 678 - 10
Nozaki K.Oshima K.Utimoto K. Tetrahedron 1989, 45: 923 - 12
Baldwin JE. J. Chem. Soc. Chem. Commun. 1976, 734 - The proposal of a chair conformation for the morpholinone template has been proposed previously and backed up by theoretical calculations, see:
-
13a
Harwood ML.Lilley IA. Tetrahedron Lett. 1993, 34: 537 -
13b
Drew MGB.Harwood LM.Price DW.Choi M.-S.Park G. Tetrahedron Lett. 2000, 41: 5077 -
14a
Beckwith ALJ.Easton CJ.Serelis AK. J. Chem. Soc., Chem. Commun. 1980, 482 -
14b
Beckwith ALJ.Lawrence T.Serelis AK. J. Chem. Soc. Chem., Commun. 1980, 484 -
14c
Spellmeyer DC.Houk KN. J. Org. Chem. 1987, 52: 959 - 15
Aldous DJ.Drew MGB.Hamelin EMN.Harwood LM.Jahans AB.Thurairatman S. Synlett 2001, 1836
References
Typical Procedure: A solution of AIBN (0.44 mmol) and tris(trimethylsilyl)silane (4.43 mmol) in benzene (88 mL) was added dropwise over 2.5 h to a solution of compound 2 (4.43 mmol) in refluxing benzene (44 mL), under an argon atmosphere. This mixture was stirred at this temperature, the reaction was monitored by TLC, and after completion the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate, 95:5) to afford bicyclic compounds. Selected data for compound 7: mp = 96 °C, yield: 40%, [α]D 20 -28 (c 0.9, HCCl3). 1H NMR (250 MHz, CDCl3): 7.41-7.23 (m, 5 H, Ph), 4.22-4.10 (m, 2 H, CH2O), 3.77 (dd, J = 5.0 Hz and 9.2 Hz, 1 H, NCHPh), 3.63 (d, J = 6.5 Hz, 1 H, NCHCO), 3.01-2.55 (m, 2 H, NCHPr and CHCH2Si), 2.15-2.09 (m, 1 H, NCHCHHCH), 1.39-0.87 (m, 6 H, -CH 2CH 2-, CHHSiCH3 and NCHCHHCH), 0.70 (dd, J = 10.5 Hz and 14.2 Hz, 1 H, CHHSiMe3), 0.62 (t, J = 6.7 Hz, 3 H, CH3), 0.0 (s, 9 H, SiMe3). 13C NMR (62.5 MHz, CDCl3): 173.3 (CO), 139.9, 128.7, 128.0, 127.5 (Ph), 71.1 (CH2O), 68.0 (NCHCO), 66.9 (NCHPr), 62.1 (NCHPh), 39.8 (NCHCH2CH), 37.3 (CH2CH2CH3), 36.7 (CHCH2Si), 24.0 (CH2Si), 19.3 (CH2CH3), 14.2 (CH3), -0.7 (Si(Me3).
9Neither simple reduction products nor dimerization adduct were detected by 1H NMR on the crude mixture.
11Procedure for obtaining compound 9: A solution of tris(trimethylsilyl)silane (37 µL, 0.12 mmol) and triethylborane (1 M in hexane, 130 µL, 0.13 mmol) in benzene (1 mL) was added dropwise to a solution of compound 6 (50 mg, 0.10 mmol) in benzene (8 ml). The mixture was refluxed for 5h and evaporated under reduced pressure. Flash chromatography (Et2O/cyclohexane, 10:90) afforded compound 9 (15 mg, 40% yield)
16
Typical Procedure:
The bicyclic compound (0.16 mmol) was dissolved in aqueous methanol
(20:1, MeOH:H2O, 3.2 mL). Trifluoroacetic acid (0.16
mmol, 1 equiv) and Pearlman’s catalyst (1 equiv by mass)
were added to the mixture, which was degassed and was stirred under hydrogen
for 3 days or 4 days. The suspension was then filtered under a pad
of Celite®. After evaporation, amino acid 10 was purified by trituration with diethyl
ether (yield: 80-90% according to the R substituent).
Selected data for 10
(R = Pr):
hygroscopic solid, yield: 90%, [α]D
20 +17
(c 0.5, MeOH). 1H
NMR (250 MHz, CD3OD): 3.60-3.51 (m, 1 H, NCHPr),
3.44 (d, J = 8.5 Hz, 1 H, NCHCOOH)), 2.35-2.24 (m, 2 H,
CHCH2TMS and NCHCHHCH), 1.78-1.67 (m 1 H, NCHCHHCH2), 1.61-1.53
(m, 1 H, NCHCHHCH2), 1.42-1.26
(m, 4 H, CH
2CH3 and
NCHCHHCH and CHHSiMe3), 0.92
(t, J = 7.0 Hz, 3 H, CH3),
0.62 (dd, J = 12.5 Hz and 10.0 Hz,
1 H, CHHSiMe3), 0.00 (s, 9
H). 13C NMR (62.5 MHz, CD3OD):
174.9 (COOH), 70.4 (CHCOOH), 62.3 (CHPr), 42.6 (CHCH2SiMe3),
42.1 (NCHCH2CH), 36.7 (CH2CH2), 23.3 (CH2CH3), 21.8 (CH2SiMe3), 15.1
(CH3), 0.0 (SiMe3).