Horm Metab Res 2003; 35(3): 147-152
DOI: 10.1055/s-2003-39075
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Interleukin (IL)-6 mRNA Expression is Stimulated by Insulin, Isoproterenol, Tumour Necrosis Factor Alpha, Growth Hormone, and IL-6 in 3T3-L1 Adipocytes

M.  Fasshauer 1 , J.  Klein 2 , U.  Lossner 1 , R.  Paschke 1
  • 1 University of Leipzig, Department of Internal Medicine III, Leipzig, Germany
  • 2 University of Lübeck, Department of Internal Medicine I, Lübeck, Germany
Further Information

Publication History

Received 26 September 2002

Accepted after revision 5 November 2002

Publication Date:
07 May 2003 (online)

Abstract

Interleukin (IL)-6 has recently been shown to be an adipocyte-expressed cytokine. Its serum concentrations are elevated in insulin resistance and obesity. For further evaluation of IL-6 gene expression regulation, fully differentiated 3T3-L1 adipocytes were treated with various hormones known to induce insulin resistance. IL-6 mRNA content was measured by quantitative real-time reverse transcription-polymerase chain reaction. Interestingly, treatment of adipocytes with 100 nM insulin, 10 µM isoproterenol, 10 ng/ml tumour necrosis factor alpha (TNFα), and 500 ng/ml growth hormone (GH) for 16 h stimulated IL-6 mRNA expression 2.3-fold, 47-fold, 74-fold, and 1.4-fold, respectively (p < 0.01). In contrast, treatment with 100 nM dexamethasone significantly decreased IL-6 expression to 32 % of control levels (p < 0.01), whereas triiodothyronine and angiotensin 2 did not have any effect. Furthermore, stimulation of IL-6 expression was time-dependent with maximal stimulatory effects detectable after 1 h of insulin, isoproterenol, and GH addition and 12 h of TNFα, respectively. Moreover, isoproterenol's effect could be almost completely reversed by pretreatment of 3T3-L1 cells with the β-adrenergic antagonist propranolol and mimicked by stimulation of GS-proteins with cholera toxin and adenylyl cyclase with forskolin and dibutyryl cAMP, respectively. Finally, IL-6 strongly induced its own expression in a time-dependent fashion. Taken together, our results demonstrate that IL-6 expression in adipocytes is governed by an autocrine positive feedback loop and upregulated by insulin, isoproterenol, TNFα, and GH. In concert with this adipocytokine's upregulation in states of decreased insulin sensitivity such as obesity and diabetes, the data support a possible role of IL-6 as a selectively regulated mediator of insulin resistance.

References

  • 1 Matthaei S, Stumvoll M, Kellerer M, Haring H U. Pathophysiology and pharmacological treatment of insulin resistance.  Endocr Rev. 2000;  21 585-618
  • 2 Saltiel A R. The molecular and physiological basis of insulin resistance: emerging implications for metabolic and cardiovascular diseases.  J Clin Invest. 2000;  106 163-164
  • 3 Spiegelman B M, Flier J S. Obesity and the regulation of energy balance.  Cell. 2001;  104 531-543
  • 4 Steppan C M, Bailey S T, Bhat S, Brown E J, Banerjee R R, Wright C M, Patel H R, Ahima R S, Lazar M A. The hormone resistin links obesity to diabetes.  Nature. 2001;  409 307-312
  • 5 Folli F, Kahn C R, Hansen H, Bouchie J L, Feener E P. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk.  J Clin Invest. 1997;  100 2158-2169
  • 6 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman M L, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.  Nat Med. 2001;  7 941-946
  • 7 Berg A H, Combs T P, Du X, Brownlee M, Scherer P E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.  Nat Med. 2001;  7 947-953
  • 8 Mohamed-Ali V, Goodrick S, Rawesh A, Katz D R, Miles J M, Yudkin J S, Klein S, Coppack S W. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo.  J Clin Endocrinol Metab. 1997;  82 4196-4200
  • 9 Fried S K, Bunkin D A, Greenberg A S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid.  J Clin Endocrinol Metab. 1998;  83 847-850
  • 10 Pickup J C, Mattock M B, Chusney G D, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X.  Diabetologia. 1997;  40 1286-1292
  • 11 Vozarova B, Weyer C, Hanson K, Tataranni P A, Bogardus C, Pratley R E. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion.  Obes Res. 2001;  9 414-417
  • 12 Pradhan A D, Manson J E, Rifai N, Buring J E, Ridker P M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.  JAMA. 2001;  286 327-334
  • 13 Stith R D, Luo J. Endocrine and carbohydrate responses to interleukin-6 in vivo.  Circ Shock. 1994;  44 210-215
  • 14 Tsigos C, Papanicolaou D A, Kyrou I, Defensor R, Mitsiadis C S, Chrousos G P. Dose-dependent effects of recombinant human interleukin-6 on glucose regulation.  J Clin Endocrinol Metab. 1997;  82 4167-4170
  • 15 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Isoproterenol inhibits resistin gene expression through a G(S)-protein-coupled pathway in 3T3-L1 adipocytes.  FEBS Lett. 2001;  500 60-63
  • 16 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 2001;  288 1027-1031
  • 17 Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman B M. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor.  J Biol Chem. 2002;  277 1645-1648
  • 18 Pickup J C, Crook M A. Is type II diabetes mellitus a disease of the innate immune system?.  Diabetologia. 1998;  41 1241-1248
  • 19 Kahn B B, Flier J S. Obesity and insulin resistance.  J Clin Invest. 2000;  106 473-481
  • 20 Bruun J M, Pedersen S B, Richelsen B. Interleukin-8 production in human adipose tissue. inhibitory effects of anti-diabetic compounds, the thiazolidinedione ciglitazone and the biguanide metformin.  Horm Metab Res. 2000;  32 537-541
  • 21 Bluher M, Michael M D, Peroni O D, Ueki K, Carter N, Kahn B B, Kahn C R. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance.  Dev Cell. 2002;  3 25-38
  • 22 Guerra C, Navarro P, Valverde A M, Arribas M, Bruning J, Kozak L P, Kahn C R, Benito M. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance.  J Clin Invest. 2001;  108 1205-1213
  • 23 Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) Reduces Gene and Protein Expression of IRS-1 and GLUT4 and Is overexpressed in Human Fat cells from Insulin-Resistant Subjects.  Diabetes (Supplement 2). 2002;  51 A303
  • 24 Senn J J, Klover P J, Nowak I, Mooney R A. Interleukin-6 Inhibits Insulin Receptor Signal Transduction in Hepatocytes.  Diabetes (Supplement 2). 2002;  51 A303
  • 25 Febbraio M A, Pedersen B K. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles.  FASEB J. 2002;  16 1335-1347
  • 26 Stouthard J M, Oude E R, Sauerwein H P. Interleukin-6 enhances glucose transport in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 1996;  220 241-245
  • 27 Reaven G M, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities-the role of insulin resistance and the sympathoadrenal system.  N Engl J Med. 1996;  334 374-381
  • 28 Lawrence V J, Coppack S W. The endocrine function of the fat cell-regulation by the sympathetic nervous system.  Horm Metab Res. 2000;  32 453-467
  • 29 Bluher M, Windgassen M, Paschke R. Improvement of insulin sensitivity after adrenalectomy in patients with pheochromocytoma.  Diabetes Care. 2000;  23 1591-1592
  • 30 Klein J, Fasshauer M, Ito M, Lowell B B, Benito M, Kahn C R. beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes.  J Biol Chem. 1999;  274 34 795-34 802
  • 31 Fasshauer M, Klein J, Kriauciunas K M, Ueki K, Benito M, Kahn C R. Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes.  Mol Cell Biol. 2001;  21 319-329
  • 32 Fasshauer M, Klein J, Ueki K, Kriauciunas K M, Benito M, White M F, Kahn C R. Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes.  J Biol Chem. 2000;  275 25 494-25 501
  • 33 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes.  FEBS Lett. 2001;  507 142-146
  • 34 Collins S, Surwit R S. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis.  Recent Prog Horm Res. 2001;  56 309-328
  • 35 Gerich J E. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity.  Endocr Rev. 1998;  19 491-503
  • 36 Hotamisligil G S, Shargill N S, Spiegelman B M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.  Science. 1993;  259 87-91
  • 37 Bluher M, Kratzsch J, Paschke R. Plasma levels of tumor necrosis factor-alpha, angiotensin II, growth hormone, and IGF-I are not elevated in insulin-resistant obese individuals with impaired glucose tolerance.  Diabetes Care. 2001;  24 328-334
  • 38 Hotamisligil G S. The role of TNFalpha and TNF receptors in obesity and insulin resistance.  J Intern Med. 1999;  245 621-625
  • 39 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 2002;  290 1084-1089
  • 40 Rizza R A, Mandarino L J, Gerich J E. Effects of growth hormone on insulin action in man. Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization.  Diabetes. 1982;  31 663-669
  • 41 Takano A, Haruta T, Iwata M, Usui I, Uno T, Kawahara J, Ueno E, Sasaoka T, Kobayashi M. Growth hormone induces cellular insulin resistance by uncoupling phosphatidylinositol 3-kinase and its downstream signals in 3t3-l1 adipocytes.  Diabetes. 2001;  50 1891-1900
  • 42 Andrews R C, Walker B R. Glucocorticoids and insulin resistance: old hormones, new targets.  Clin Sci (Colch ). 1999;  96 513-523
  • 43 Fickova M, Zorad S, Macho L. The effect of in vivo thyroxine treatment on insulin receptors, glucose transport and GLUT4 in rat adipocytes.  Horm Metab Res. 1997;  29 16-19
  • 44 Hardie L J, Guilhot N, Trayhurn P. Regulation of leptin production in cultured mature white adipocytes.  Horm Metab Res. 1996;  28 685-689
  • 45 Delporte M L, Funahashi T, Takahashi M, Matsuzawa Y, Brichard S M. Pre- and post-translational negative effect of beta-adrenoceptor agonists on adiponectin secretion: in vitro and in vivo studies.  Biochem J. 2002;  367 677-685
  • 46 Kappes A, Loffler G. Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes.  Horm Metab Res. 2000;  32 548-554

Prof. Dr. R. Paschke

University of Leipzig · Department of Internal Medicine III

Ph.-Rosenthal-Str. 27 · 04103 Leipzig · Germany

Phone: + 49 (341) 97 13-200

Fax: + 49 (341) 97 13-209

Email: pasr@medizin.uni-leipzig.de