Laryngorhinootologie 2003; 82: 157-180
DOI: 10.1055/s-2003-38931
© Georg Thieme Verlag Stuttgart · New York

8 Laser in der Ohrforschung

T.  Zahnert1
  • 1Universitäts-HNO-Klinik Dresden (Direktor: Prof. Dr. med. K.-B. Hüttenbrink), Dresden
Further Information

Publication History

Publication Date:
28 April 2003 (online)

Zusammenfassung

Aus der physikalische Natur des Laserlichtes ergeben sich Anwendungen des Lasers in der Hals-Nasen-Ohrenheilkunde, die über das „Laserskalpell” weit hinaus gehen. In der folgenden Arbeit wird der Laser als ein optisches Messinstrument vorgestellt, welches aus der modernen Mittel- und Innenohrforschung nicht mehr wegzudenken ist. Durch seine kontaktfreie Funktionsweise ist er wie kein anderes Messmittel geeignet, die nur wenige Nanometer kleinen Schwingungsamplituden des Mittelohres und der Cochlea aufzunehmen. In dieser Übersichtsarbeit werden häufig eingesetzte Lasermesstechniken zusammengestellt, wie sie in den letzten Jahren in der Ohrforschung verwendet wurden. Für das Mittel- und Innenohr können detaillierte Anwendungen und neue experimentelle Ergebnisse der Laserinterferometrie genannt werden. Am Beispiel des Mittelohres wird gezeigt, wie aus Lasermessungen die Schwingform des gesunden Trommelfell-Gehörknöchelchenkomplexes in verschiedenen Frequenzbereichen bildlich dargestellt werden kann. Versuche am Felsenbeinpräparat demonstrieren die Laseranwendung bei der Mittelohrimplantatentwicklung. Erste klinische Untersuchungen beschreiben den Einsatz der Laserinterferometrie zur Messung der Ossikelkettenschwingungsfähigkeit am Patienten. Damit kann die Methode zukünftig als Ergänzung zur bestehenden Hördiagnostik eingesetzt werden und zusätzliche Informationen über die Funktion des Mittelohres hinter intaktem Trommelfell liefern. In der Innenohrforschung dient die Laserinterferometrie der Untersuchung der Basilarmembranschwingung und der Mikromechanik des Cortischen Organs. Beispielhaft wird gezeigt, wie sich mit dieser Methode Schwingungen der Basilarmembran bis in den Zellbereich messen lassen. Die Ergebnisse dienen der Weiterentwicklung bestehender Cochleamodelle und dem besseren Verständnis des cochleären Verstärkers.

Literatur

  • 1 Westphal W H. Physik. Berlin, Heidelberg; Springer-Verlag 1947 Bd. 12.
  • 2 Spengler B. Grundlagen der Lasertechnik. www.uni-duesseldorf.de/www/MedFak/LaserMedizin/Laserkurs_skript/Laserkurs_Skript.PDF 2002
  • 3 Vogel U, Zahnert T, Hofmann G, Offergeld C, Hüttenbrink K-B. Laser vibrometry of the middle ear: opportunities and limitations. In: Hüttenbrink KB (ed) Middle Ear Mechanics in Research and Otosurgery. Dresden; Dept. of Oto-Rhino-Laryngology, Univ. Hospital, Univ. of Technology 1997: 128-133
  • 4 Tonndorf J, Khanna S M. Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by a laser interferometer.  J Acoust Soc Amer. 1968;  44 1546-1554
  • 5 Dragsten P R, Webb W W, Paton J A, Cabranica R R. Light scattering heterodyne interferometer for vibration measurements in auditory organs.  J Acoust Soc Am. 1976;  60 665-671
  • 6 Eberhadt F J, Anrews F A. Laser heterodyne system for measurement of and analysis of vibration.  J Acoust Soc Am. 1970;  48 603-609
  • 7 Michelsen A. Laser Techniques in Studies of Hearing. In: Sattelle DB, Lee WI, Ware BR (eds) Biomedical Applications of Laser Light Scattering. Elsevier Biomedical Press 1982: 357-370
  • 8 Vlaming M S. Middle ear mechanics studied by laser Doppler interferometry. TU Delft/NL; Dissertation 1987
  • 9 Willemin J F, Dandliker R, Khanna S M. Heterodyne interferometer for submicroscopic vibration measurements in the inner ear.  J Acoust Soc Am. 1988;  83 787-795
  • 10 Vlaming M S, Feenstra L. Studies on the mechanics of the normal human middle ear.  Clin Otolaryngol. 1986;  11 353-363
  • 11 Nishihara S, Aritomo H, Goode R L. Effect of changes in mass on middle ear function.  Otolaryngol Head Neck Surg. 1993;  109 899-910
  • 12 Goode R L, Killion M, Nakamura K, Nishihara S. New knowledge about the function of the human middle ear: development of an improved analog model.  Am J Otol. 1994;  15 145-154
  • 13 Kurokawa H, Goode R L. Sound pressure gain produced by the human middle ear.  Otolaryngol Head Neck Surg. 1995;  113 349-355
  • 14 Rodriguez J J, Zenner H P, Hemmert W, Burkhardt C, Gummer A W. Laservibrometrie.  HNO. 1997;  45 997-1007
  • 15 Murakami S, Gyo K, Goode R L. Effect of increased inner ear pressure on middle ear mechanics.  Otolaryngol Head Neck Surg. 1998;  118 703-708
  • 16 Eiber A, Freitag H-G, Burkhardt C, Hemmert W, Maassen M M, Jorge J R, Zenner H P. Dynamics of middle ear prostheses - simulations and measurements.  Audiol Neuro-Otol. 1999;  4 178-184
  • 17 Schön F, Müller J. Measurement of ossicular vibrations in the middle ear.  Audiol Neuro-Otol. 1999;  4 142-149
  • 18 Decraemer W F, Khanna S M. New insights into vibration of the middle ear. In: Rosowski JJ, Merchant SN (eds) Second International Symposium on Middle-Ear Mechanics in Research and Otosurgery. Boston, MA, USA, 1999. The Hague, The Netherlands; Kugler Publications 2000: 23-38
  • 19 Voss S E, Rosowski J J, Merchant S N, Peake W T. Acoustic responses of the human middle ear.  Hearing Research. 2000;  150 43-69
  • 20 Stenfelt S, Hato N, Goode R L. Factors contributing to bone conduction: The middle ear.  J Acoust Soc Am. 2002;  111 947-959
  • 21 Brünings S. Zeitmittelungsverfahren zur Schwingungsanalyse. GMA-Bericht. Verfahren AO 1991
  • 22 Powell R L, Stetson K S. Interferometric vibration analysis by wavefront reconstruction.  J Opt Soc Amer. 1965;  55 1593-1598
  • 23 Michelsen A. The physiology of the locust ear.  Zeitschr vergl Physiol. 1971;  71 49-128
  • 24 Khanna S M, Tonndorf J. The vibration pattern of the round window in cats.  J Acoust Soc Am. 1971;  50 1475-1483
  • 25 Khanna S M, Tonndorf J. Tympanic membrane vibrations in cats studied by time-averaged holography.  J Acoust Soc Amer. 1972;  51 1904-1920
  • 26 v. Bally G. Holografische Schwingungsanalyse des Trommelfelles.  Laryng Rhinol. 1978;  57 444-450
  • 27 Dancer A L, Franke A B, Smigielski P, Albe F, Fogot H. Holographic interferometry applied to the investigation of tympanic-membrane displacements in guinea-pig ears subjected to acoustic impulses.  J Acoust Soc Am. 1975;  58 223-228
  • 28 Hogmoen K, Gundersen T. Holographic investigation of stapes footplate movements.  Acoustica. 1977;  37 198-202
  • 29 Tonndorf J, Khanna S M. The role of the tympanic membrane in middle ear transformation.  Ann Otol. 1970;  79 743-753
  • 30 Gundersen T, Hogmoen K. Holographic vibration analysis of the ossicular chain.  Acta Otolaryngol. 1976;  82 16-25
  • 31 Höfling R. Specklemesstechnik.  Technische Mitteilungen. 1992;  1 29-33
  • 32 Wada H, Takeuchi M, Hozawa K, Gemma T, Nara M. Vibration measurement of the tympanic membrane using the time-averaged speckle pattern interferometry. Abstract of the Assoc Res Otolaryngol 1998 27
  • 33 Yamaguchi M, Agawa K, Kanetake H, Koike Y, Kashima K. Measurement of blood flow in human tympanic membrane with spectrophotometry and laser speckle flow meter.  Nippon Jibiinkoka Gakkai Kaiho. 1990;  93 1354-1362
  • 34 Heymann J, Lingner A. Moiréverfahren. Leipzig; VEB Fachbuchverlag 1986 Bd. 1
  • 35 Khanna S M, Tonndorf J. Tympanic membrane shape determined by moiré topography.  J Acoust Soc Am. 1975;  1 72
  • 36 Suehiro M. Effects of an increase or decrease in the middle ear pressure on tympanic membrane vibrations (experimental study by holographic interferometry).  Nippon Jibiinkoka Gakkai Kaiho. 1990;  93 398-406
  • 37 Decraemer W F, Dirckx J J, Funnell W R. Shape and derived geometrical parameters of the adult, human tympanic membrane measured with a phase-shift moire interferometer.  Hear Res. 1991;  51 107-121
  • 38 Dirckx J J, Decraemer W F. Area change and volume displacement of the human tympanic membrane under static pressure.  Hear Res. 1992;  62 99-104
  • 39 v. Unge M, Decraemer W F, Dirckx J J, Bagger-Sjoback D. Tympanic membrane displacement patterns in experimental cholesteatoma.  Hear Res. 1999;  128 1-15
  • 40 Dirckx J J, Decraemer W F, v. Unge M, Larsson C. Measurement and modeling of boundary shape and surface deformation of the Mongolian gerbil pars flaccida.  Hear Res. 1997;  111 153-164
  • 41 Dirckx J J, Decraemer W F. Effect of middle ear components on eardrum quasi-static deformation.  Hear Res. 2001;  157 124-137
  • 42 Funnell W R, Decraemer W F. On the incorporation of moire shape measurements in finite-element models of the cat eardrum.  J Acoust Soc Am. 1996;  100 925-932
  • 43 Riva C, Ross B, Benedek G B. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries.  Invest Ophthalmol. 1972;  11 936-944
  • 44 Nilsson G E, Tenland T, Oberg P A. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow.  IEEE Trans Biomed Eng. 1980;  27 597-604
  • 45 Miller J M, Marks N J, Goodwin P C. Laser Doppler measurements of cochlear blood flow.  Hear Res. 1983;  11 385-394
  • 46 Miller J M, Goodwin P C, Marks N J. Inner ear blood flow measured with a laser Doppler system.  Arch Otolaryngol. 1984;  110 305-308
  • 47 Wright J W, Dengerink H A, Miller J M, Goodwin P C. Potential role of angiotensin 2 in noise-induced increases in inner ear blood flow.  Hear Res. 1985;  17 41-46
  • 48 Hultcrantz E, Angelborg C, Beausang-Linder M. Noise and cochlear blood flow.  Arch Otol Rhinol Laryngol. 1979;  224 103-106
  • 49 Laurikainen E, Kanninen P, Aho H, Saukko P. The anatomy of the human promotory for laser Doppler flowmetrie.  Eur Arch Otolaryngol. 1997;  254 264-268
  • 50 Miller J M, Bredberg G, Grénman R, Suonpää J, Lindström B, Didier A. Measurement of human blood flow.  Ann Otol Rhinol Laryngol. 1991;  100 44-53
  • 51 Scheibe F, Haupt H, Berndt H, Magnus S, Waymar P. Laser light transmission and laser Doppler blood flow measurements on the human, rat and guinea pig cochlea.  Eur Arch Otolaryngol. 1990;  247 20-23
  • 52 Nakashima T, Suzuki T, Morisaki H, Yanagita N. Measurement of cochlear blood flow in sudden deafness.  Laryngoscope. 1992;  102 1308-1310
  • 53 Haapaniemi J, Schrey A, Laurikainen E. The effect of promotorial bone on laser light transmission in measuring capillary blood flow in vivo.  Eur Arch Otolaryngol. 2001;  258 209-212
  • 54 Selmani Z, Pyykkö I, Ishizaki H, Martilla T I. Cochlear blood flow measurement in patients with Meniere's disease and other inner ear disorders.  Acta Otolaryngol. 2001;  545 10-13
  • 55 Huber A, Schwab C, Linder T, Stoeckli S, Ferrazzini M, Dillier N, Fisch U. Evaluation of eardrum laser Doppler interferometry as a diagnostic tool.  Laryngoscope. 2001;  111 501-507
  • 56 Konradsson K, Ivarsson A, Bank G. Computerized laser Doppler interferometric scanning of the vibrating tympanic membrane.  Scand Audiol. 1987;  16 159-166
  • 57 Huber A, Ball G, Asai M, Goode R. The vibration pattern of the tympanic membrane after placement of a total ossicular replacement prosthesis (TORP). Hüttenbrink K-B (ed) Middle ear mechanics in research and otosurgery. Dresden; Dept. of Oto-Rhino-Laryngology, Univ. Hospital, Univ. of Technology 1997: 219-223
  • 58 Tonndorf J, Khanna S M. Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography.  J Acoust Soc Amer. 1972;  52 1221-1233
  • 59 Helms J. Experimentelle und klinische Untersuchungen zur Funktion des normalen, erkrankten und operierten Trommelfells.  Acta Otolaryngol. 1977;  350 1-59
  • 60 Lokberg O J, Hogmoen K, Gundersen T. Vibration measurement of the human tympanic membrane - in vivo.  Acta Otolaryngol. 1980;  89 37-42
  • 61 Guinan J J, Peake W T. Middle-ear characteristics of anaesthetized cats.  J Acoust Soc Am. 1967;  41 1237-1261
  • 62 Cancura W, Stark H. Über die Schwingungsform des Steigbügels in Abhängigkeit von der Lautstärke. Experimentelle Untersuchungen am menschlichen Schläfenbeinpräparat. Arch.  Oto-Rhino-Laryng. 1977;  215 121-128
  • 63 Heiland K E, Goode R L, Asai M, Huber A M. A human temporal bone study of stapes footplate movement.  Am J Otol. 1999;  20 81-86
  • 64 Huber A, Linder T, Ferrazzini M, Schmid S, Dillier N, Stoeckli S, Fisch U. Intraoperative assessment of stapes movement.  Ann Otol Rhinol Laryngol. 2001;  110 31-35
  • 65 Decraemer W F, Khanna S M, Funnell W R. Measurement and modelling of three-dimensional vibration of the stapes in cat. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T (eds) Recent developments in auditory mechanics. Sendai; World Scientific 1999: 36-44
  • 66 Dahmann D. Zur Physiologie des Hörens; experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette sowie über deren Verhalten auf Ton und Luftdruck.  Z f Hals-Nasen-Ohrenheilk. 1930;  27 329-368, 462 - 488
  • 67 Barany E. A contribution to the physiology of bone conduction.  Acta Otol Laryngol. 1938;  26
  • 68 Helmholtz H. Die Mechanik der Gehörknöchelchen und des Trommelfells.  Pflügers Archiv Ges Physiol. 1868;  1 1-60
  • 69 v. Bekesy G. Experiments in hearing (Reprint). Huntington/NY; Robert E. Krieger Publ. Comp. 1960/1980
  • 70 Wever E G, Lawrence M. Physiological Acoustics. Princeton; Princeton University Press 1954
  • 71 Gyo K, Aritomo H, Goode R L. Measurement of the ossicular vibration ratio in human temporal bones by use of a video measuring system.  Acta Otolaryngol Stockh. 1987;  103 87-95
  • 72 Decraemer W F, Khanna S M. Vibrations on the malleus measured through the ear canal. In: Hüttenbrink K-B (ed) Middle Ear Mechanics in Research and Otosurgery. Dresden; Dept. of Oto-Rhino-Laryngology: Univ. Hospital, Univ. of Technology 1997: 32-39
  • 73 Ball G R, Huber A, Goode R L. Scanning laser Doppler vibrometry of the middle ear ossicles.  Ear Nose Throat J. 1997;  76 213-222
  • 74 Huber A. et al .Analysis of ossicular vibration in three dimensions. In: Hüttenbrink K-B (ed) Middle ear mechanics in research and otosurgery. Dresden; Dept. of Oto-Rhino-Laryngology: Univ. Hospital, Univ. of Technology 1997: 82-87
  • 75 Elpern B S, Greisen O, Andersen H C. Experimental studies on sound transmission in the human ear. VI: Clinical and experimental observations on non-otosclerotic ossicle fixation.  Acta Otolaryngol. 1965;  60 223-230
  • 76 Hudde H, Engel A. Measuring and modeling basic properties of the human middle ear and ear canal. Part III: Eardrum impedances, transfer functions and model calculations.  Acustica & acta acustica. 1998;  84 1091-1109
  • 77 Maassen M M, Zenner H P. Tympanoplasty typ 2 with ionomeric cement and titanium-gold-angle prostheses.  Amer J Otol. 1998;  19 693-699
  • 78 Hüttenbrink K B. Die Mechanik und Funktion des Mittelohres: Teil 1: Die Ossikelkette und die Mittelohrmuskeln.  Laryngo-Rhino-Otol. 1992;  71 545-551
  • 79 Fletcher J L, Riopelle A J. Protectice effect of the acoustic reflex for impulsive noises.  J Acoust Soc Am. 1960;  32 401-404
  • 80 Dallos P. The Auditory Periphery. Biophysics and Physiology. New York, London; Academic Press Inc. 1973
  • 81 Elbrond O, Elpern B S. Reconstruction of ossicular chain in incus defects.  Arch Otolaryngol. 1965;  82 603-608
  • 82 Elbrond O, Elpern B S. Reconstruction of the ossicular chain.  Arch Otolaryngol. 1966;  84 490-494
  • 83 Elbrond O, Elpern B S. Rekonstruktion der Gehörknöchelchenkette. Experimentelle Untersuchungen.  Mschr Ohrenheilkunde. 1968;  102 102-105
  • 84 Cottle R D, Tonndorf J. Mechanical aspects of stapedial substitution. An experimental study.  Arch Otolaryngol. 1966;  83 547-553
  • 85 Kreutzer U A. Experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette nach Tympanoplastik unter Berücksichtigung der Stapesfußplatte. Tübingen; Inaug. Diss. 1978
  • 86 Hüttenbrink K B, Hudde H. Untersuchungen zur Schalleitung durch das rekonstruierte Mittelohr mit einem Hydrophon; erste Ergebnisse.  HNO. 1994;  42 49-57
  • 87 Rosowski J J, Merchant S N. Mechanical and acoustic analysis of middle ear reconstruction.  Am J Otol. 1995;  16 486-497
  • 88 Williams K R, Blayney A W, Lesser T HJ. A 3-D finite element analysis of the natural frequencies of vibration of a stapes prosthesis replacement reconstruction of the middle ear.  Clin Otolaryngol. 1995;  20 36-44
  • 89 Hüttenbrink K-B. Mechanical aspects of middle ear reconstruction. In: Hüttenbrink K-B (ed). Middle Ear Mechanics in Research and Otosurgery. Dresden; Dept. of Oto-Rhino-Laryngology: Univ. Hospital, Univ. of Technology 1997: 165-169
  • 90 Zahnert T, Schmidt R, Hüttenbrink K-B, Hardtke H-J. FE-Simulation of vibrations of the Dresden middle ear prosthesis. Hüttenbrink K-B (ed) Middle Ear Mechanics in Research and Otosurgery. Dresden; Dept. of Oto-Rhino-Laryngology: Univ. Hospital, Univ. of Technology 1997: 200-206
  • 91 Asai M, Heiland K E, Huber A M, Goode R L. Evaluation of a cement incus replacement prosthesis in a temporal bone model.  Acta Otolaryngol. 1999;  119 573-576
  • 92 Asai M, Huber A, Goode R L. Analysis of the best site on the stapes footplate for ossicular chain reconstruction.  Acta Otolaryngol. 1999;  119 356-361
  • 93 Feenstra L, Vlaming M S. Laser interferometry with human temporal bones.  Adv Oto-Rhino-Laryng. 1987;  37 36-38
  • 94 Nishihara S, Goode R. Experimental study of the acoustic properties of incus replacement prostheses in a human temporal bone model.  Am J Otol. 1994;  15 485-494
  • 95 Gan R Z, Wood M W, Dyer R K, Dormer K J. Mass loading on the ossicles and middle ear function.  Ann Otol Rhinol Laryngol. 2001;  110 478-485
  • 96 Meister H, Walger M, Mickenhagen A, Stennert E. Messung der Schwingungseigenschaften von Mittelohrimplantaten mit einem mechanischen Mittelohrmodell.  HNO. 1998;  46 241-245
  • 97 Tange R A, Bruijn A JG, Grolman W. Experience with a new pure gold piston in stapedotomy for cases of otosclerosis.  Auris Nasus Larynx. 1998;  25 249-253
  • 98 Gjuric M, Schagerl S. Gold prostheses for ossiculoplasty.  Am J Otol. 1998;  19 273-276
  • 99 Stupp G H, Dalchow C, Grün D, Stupp H F, Wustrow J. Titan-Prothesen im Mittelohr. 3-Jahres-Erfahrungsbericht.  Laryngo-Rhino-Otol. 1999;  78 299-303
  • 100 Fisch U. Total reconstruction of the ossicular chain.  Otolaryngol Clin N Amer. 1994;  27 785-797
  • 101 Dyer, Jr R K, Dormer K J, Pineda M, Conley K, Saunders J, Dennis M. The hearing laser vibrometer. Initial clinical results. In: Rosowski JJ, Merchant SN (eds) Second International Symposium on Middle-Ear Mechanics in Research and Otosurgery. Boston, MA, USA. The Hague, The Netherlands; Kugler Publications 2000: 383-397
  • 102 Goode R L, Ball G, Nishihara S. Measurement of umbo vibration in human subjects - method and possible clinical applications.  Am J Otol. 1993;  14 247-251
  • 103 Goode R L, Ball G, Nishihara S, Nakamura K. Laser Doppler Vibrometer (LDV) - A new clinical tool for the otologist.  Amer J Otol. 1996;  17 813-822
  • 104 Merchant S N, Whittemore K R, Poon B, Lee C-Y, Rosowski J J. Clinical measurements of tympanic membrane velocity using laser Doppler vibrometry. Preliminary results, methodological issues and potential applications. In: Rosowski JJ, Merchant SN (eds) Second International Symposium on Middle-Ear Mechanics in Research and Otosurgery. Boston, MA, USA. The Hague, The Netherlands; Kugler Publications 2000: 367-381
  • 105 Stasche N, Foth H-J, Hörmann K, Baker A, Huthoff C. Middle ear transmission disorders - tympanic membrane vibration analysis by laser-Doppler-vibrometry.  Acta Otolaryngol (Stockh). 1994;  114 59-63
  • 106 Goode R L. Middle Ear Function, Biologic Variation, and Otosurgical Alchemy. Can we turn tin ears into gold? .  Arch Otolaryngol. 1986;  112 923-924
  • 107 Ulfendahl M. Mechanical response of the mammalian cochlea.  Progress Neurobiol. 1997;  53 331-380
  • 108 Ruggero M A, Rich N C. Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration.  Hear Res. 1991;  51 215-230
  • 109 Lynch T J, Nedzelnitsky V, Peake W T. Input impedance of the cochlea in cat.  J Acoust Soc Am. 1982;  72 108-131
  • 110 Khanna S M, Figueroa L Y. Need for noninvasive technique to measure cochlear responses.  Acta Otolaryngol (Stockh). 1989;  467 19-26
  • 111 Hemmert W, Zenner H P, Gummer A W. Three-dimensional motion of the organ of Corti.  Biophys J. 2000;  78 2285-2297
  • 112 Robles L, Rugerro M A. Mechanics of Mammalian Cochlea.  Physiological Reviews. 2001;  81 1305-1351
  • 113 Khanna S M, Koester C J, Willemin J F, Dändliker R, Rosskothen H. A noninvasive optical system for the study of the function of inner ear in living animals. Selected papers on coherence domain methods in biomedical optics. SPIE 2732.Tuchin V 1996: 64-81
  • 114 Khanna S M, Leonard D G. Basilar membrane tuning in the cat cochlea.  Science. 1982;  215 305-306
  • 115 Nuttall A L, Dolan D F, Avinash G. Laser Doppler velocimetry of basilar membrane vibration.  Hear Res. 1991;  51 203-213
  • 116 Cooper N P, Rhode W S. Basilar membrane mechanics in the hook region of the cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts.  Hear Res. 1992;  63 163-190
  • 117 Rugerro M A, Robles L, Rich N C. Basilar membrane mechanics at the base of the chinchilla cochlea. 2. Response to low-frequency tones and relationship to microphonics and spike initiation in the 8. nerve.  J Acoust Soc Am. 1986;  80 1375-1383
  • 118 Xue S, Mountain D C, Hubbard A E. Direct measurement of electrically-evoked basilar membrane motion. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (ed) Biophysics of hair cell sensory system. Singapore; World Scientific Publishing Co. 1993: 361-369
  • 119 ITER . Cellular vibration and motility in the organ of corti. Acta Otol Laryngol.  (Stockh). 1989;  467 1-279
  • 120 Khanna S M, Hao L F. Nonlinearity in the apical turn of living guinea pig cochlea.  Hear Res. 1999;  153 89-104
  • 121 Gummer A W, Hemmert W, Zenner H P. Resonant tectorial membrane motion in the inner ear: Its crucial role in frequency tuning. Proc.  Natl Acad Sci USA. 1996;  93 8727-8732
  • 122 Rhode W S. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique.  J Acoust Soc Am. 1971;  49 1218-1231
  • 123 Rhode W S. Some observations on cochlear mechanics.  J Acoust Soc Am. 1978;  67 158-176
  • 124 Sellick P M, Patuzzi R, Johnstone B M. Comparison between the tuning properties of inner hair cells and basilar membrane motion.  Hear Res. 1983;  10 93-100
  • 125 Janssen T. Schwellennahe und überschwellige Schallverarbeitung des Innenohres, Teil 1: Physiologie und Pathophysiologie.  Z Audiol. 2000;  39 100-117
  • 126 Cooper N P. An improved heterodyne laser interferometer for use in studies of cochlear mechanics.  J Neurosci Meth. 1999;  88 93-102
  • 127 Nuttall A L, Ren T, de Boer E, Zheng J, Parthasarathi A, Grosh K, Guo M, Dolan D. In vivo micromechanical measurements of the organ of Corti in the basal cochlear turn.  Audiol Neurootol. 2002;  7 21-26
  • 128 O'Neill M P, Bearden A. Laser-feedback measurements of turtle basilar membrane motion using direct reflection.  Hear Res. 1995;  84 125-138
  • 129 Rhode W S, Cooper N P. Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea pig cochleae.  Hear Res. 1993;  66 31-45
  • 130 Cooper N P, Rhode W S. Nonlinear mechanics at the apex of the guinea-pig cochlea.  Hear Res. 1995;  82 225-243
  • 131 Ulfendahl M, Khanna S M, Fridberger A, Flock A, Flock B, Jager W. Mechanical response characteristics of the hearing organ in the low- frequency regions of the cochlea.  J Neurophysiol. 1996;  76 3850-3862
  • 132 Zinn C, Maier H, Zenner H P, Gummer A W. Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea.  Hear Res. 2000;  142 159-183
  • 133 Zenner H P. Hören: Physiologie, Biochemie, Zell- und Neurobiologie. Stuttgart, New York; Thieme 1994
  • 134 Khanna S M, Willemin J F, Ulfendahl M. Measurement of optical reflectivity in cells of the inner ear.  Acta Otolaryngol Suppl. 1989;  467 69-75
  • 135 Koester C J, Khanna S M, Rosskohten H D, Takaberry R B. Incident light optional sectioning microscope for visualisation of cellular structures in the inner ear.  Acta Otolaryngol Suppl. 1989;  476 27-33
  • 136 Gummer A W, Hemmert W, Morioka I, Reis P, Reuter G, Zenner H P. Cellular motility measured in guinea-pig cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (ed) Biophysics of Hair Cell Sensory Systems. Singapore; World Scientific Publishing Co. 1993: 229-239
  • 137 Khanna S M, Ulfendahl M, Steele C R. Vibration of reflective beads on the basilar membrane.  Hear Res. 1998;  116 71-85
  • 138 Rhode W S. Cochlear mechanics, A Rev.  Physiol. 1984;  46 231-246
  • 139 Rugerro M A. Responses to sound of the basilar membrane of the mammalian cochlea.  Curr Opin Neurobiol. 1992;  2 449-456
  • 140 Barrett M D, Peterson E H, Grant J W. Extrinsic Fabry-Perot Interferometer for measuring the stiffness of ciliary bundles on hair cells.  IEEE Trans Biomed Eng. 1999;  46 331-339
  • 141 Li Z, Anvari B, Takashima M, Brecht P, Torres J H, Brownell W E. Membrane tether formation from outer hair cells with optical tweezers.  Biophys J. 2002;  82 1386-1395
  • 142 Yamada S, Wirtz D, Kuo S C. Mechanics of living cells measured by laser tracking microrheology.  Biophys J. 2000;  78 1736-1747

Dr. med. Thomas Zahnert

Universitäts-HNO-Klinik Dresden

Fetscherstraße 74 · 01307 Dresden ·

Email: thomas.zahnert@mailbox.tu-dresden.de