Anästhesiol Intensivmed Notfallmed Schmerzther 2003; 38(3): 158-164
DOI: 10.1055/s-2003-37774
Originalie
© Georg Thieme Verlag Stuttgart · New York

Point-Of-Care (POC) Monitoring in Anästhesie und Intensivmedizin - eine Übersicht über die zur Verfügung stehenden Möglichkeiten

Point of Care (POC) Monitoring in Anesthesia and Intensive Care - An Overview of Available POC SystemsJ.  Boldt1
  • 1Klinikum der Stadt Ludwigshafen, Klinik für Anaesthesiologie und Operative Intensivmedizin,
    Ludwigshafen am Rhein
Further Information

Publication History

Publication Date:
12 March 2003 (online)

Zusammenfassung

Die rasche Bestimmung von Laborparametern ist bei der Versorgung operativer und intensivmedizinischer Patienten von großer Bedeutung. Die Fortschritte in der Mikrotechnologie haben zur Entwicklung von Kleingeräten geführt, mit denen Laborgrößen bettseitig und zeitnah bestimmt werden können. Mit Hilfe des „Point-Of-Care” (POC) Monitoring kann eine Vielzahl von wichtigen Funktionen erfasst werden (Größen des Gasaustausches (z. B. Blutgasanalyse), des Metabolismus (z. B. Blutzucker, Laktat), der Hämatologie (z. B. Hämoglobin), der Gerinnung (z. B. Prothrombinzeit, Thrombozytenfunktion, partielle Thromboplastinzeit), Organschädigung (z. B. Herz, Niere)). Der Grundgedanke des POC-Monitorings ist „je schneller desto besser” („from vein to brain”). Die Bestimmung von Laborgrößen über das Zentrallabor umfasst die Blutabnahme in speziell vorbereitete Röhrchen, den Transport ins Labor, Pipetierung und Separation der Probe sowie die Analyse. Bei den Kosten des jeweiligen Laborparameters dürfen nicht nur Kit-Kosten mitberücksichtigt werden, zusätzliche Kosten müssen ebenso miterfasst werden. Durch die rasche, leicht durchführbare Erfassung von vitalen Laborgrößen und die damit verbundene zeitnahe Therapie sind zudem möglicherweise deutliche Einsparungen möglich. Zahlreiche POC-Systeme sind z. Zt. auf dem Markt. Die vorliegende Übersicht soll es dem an einem POC-Monitoring Interessierten erleichtern, die zur Verfügung stehenden Systeme zu sichten und somit eine Entscheidungshilfe bei der Einführung des POC-Monitoring geben.

Abstract

There is an increasing trend to have data rapidly ready at the patient's bedside. The general principle behind point-of-care (POC) testing is that „faster is better” (‘from vein to brain’). The entire process for laboratory testing includes withdrawal of blood into special (pre-labelled) tubes, transportation of the sample to the central laboratory where the plasma is separated from the blood cells by centrifugation, carefully pippeting of a defined volume of plasma that is placed in the analyzer. POC instruments provide us with the potential to do old things in new ways. With the help of portable POC analyzers a variety of laboratory parameters including coagulation parameters, blood gas analysis, electrolytes, markers of organ function can be measured next to the patient's bed thus significantly shorting turnaround-time (TAT). Cost analyses of new monitoring devices are necessary in today's climate of cost savings. It is important to capture all costs and not only costs of the test kits. Direct costs (e. g. test cartridges, costs for the analyzers, cost for quality control) may constitute only a small percentage of the true costs. Hidden costs consist of overhead costs (e. g. transportation) and the consequences of delayed results. The present overview summarizes the available POC systems in Germany and may serve as a decision maker for those who are interested in introducing POC monitoring systems.

Literatur

  • 1 Hellstern P. Hämostasiologische Labordiagnostik in der Intensivmedizin und Stellenwert der Point-of-care Diagnostik.  Intensivmed. 2001;  38 (Suppl 1) I/2-I/8
  • 2 Becker R, Cyr J, Corrao J M, Ball S P. Bedside coagulation monitoring in heparin-treated patients with active thromboembolic disease: a coronary care unit experience.  Am Heart J. 1994;  128 719-723
  • 3 Kost G J. New whole blood analysers and their impact on cardiac and critical care.  Clin Rev Clin Lab Sci. 1993;  30 153-202
  • 4 Samama C hM, Quezada R, Riou B. et al . Intraoperative measurement of activated partial thromboplastin time and prothrombin time with a new compact monitor.  Acta Anaesthesiol Scand. 1994;  38 232-237
  • 5 Zaloga G P, Hill T R, Strickland R A. et al . Bedside blood gas, electrolytes monitoring in critically ill patients.  Crit Care Med. 1989;  17 920-925
  • 6 Zaloga G P. Evaluation of bedside testing options for the critical care unit.  Chest. 1990;  97 185S-190S
  • 7 Boldt J, Walz G, Triem J, Suttner S, Kumle B. Point-of-care (POC) measurement of coagulation after cardiac surgery.  Intensive Care Med. 1998;  24 1187-1193
  • 8 Castro J H, Oropello J M, Halpern N. Point-of-care testing in the intensive care unit: the intensive care physician's perspective.  Am J Clin Pathol. 1995;  104 (suppl 1) S95-S99
  • 9 Gravlee G P, Lavender S, Brockschmidt J. et al . Predictive value of coagulation testing after cardiopulmonary bypass.  Anesth Analg. 1990;  70 S135
  • 10 Keffer J H. Economic considerations of point-of-care testing.  Am J Clin Pathol. 1995;  104 (suppl 1) S107-110
  • 11 Lamb L S, Parrish R S, Goran S F. Current nursing practice of point-of-care laboratory diagnostic testing in critical care units.  Am J Crit Care. 1995;  4 429-434
  • 12 Nuttal G A, Oliver W C, Beynen F M, Dull J J, Murray M J, Nichols W L. Intraoperative measurement of activated partial thromboplastin time and prothrombin time by a portable laser photometer in patients following cardiopulmonary bypass.  J Cardiothorac Vasc Anesth. 1993;  7 402-409
  • 13 Chernow B. Blood conservation - critical care imperative.  Crit Care Med. 1991;  19 313-314
  • 14 Ansell J, Tiarks C, Hirsh J, McGehee W, Adler D, Weibert R. Measurement of the activated partial thromboplastin time from a capillary (fingerstick) sample of whole blood.  Am J Clin Pathol. 1991;  95 222-227
  • 15 Reiner J S, Coyne K S, Lundergan C F, Ross A M. Bedside monitoring of heparin therapy: comparison of activated clotting time to activated partial thromboplastin time.  Cath Cardiovasc Diag. 1994;  32 49-52
  • 16 Müller M M, Hackl W, Griesmacher A. Point-of-Care Testing - das Intensivlaboratorium.  Anaesthesist. 1999;  48 3-8
  • 17 Schneider J, Dudziak R, Westphal K, Vettermann J. Der i-STAT Analyzer.  Anaesthesist. 1997;  46 704-714
  • 18 Despotis G J, Hogue C W, Santoro S A, Joist J H, Barnes P, Lappas D G. Effect of heparin on whole blood activated partial thromboplastin time using a portable, whole blood coagulation monitor.  Crit Care Med. 1995;  23 1674-1679
  • 19 Despotis G, GJ , Santoro S A, Spitznagel E. et al . On-site PT, aPTT and platelet count: A comparison between whole blood and laboratory assays with coagulation factor analysis in patients presenting for cardiac surgery.  Anesthesiology. 1995;  80 338-351
  • 20 Ammar T. Bedside coagulation monitoring.  J Cardiothorac Vasc Anesth. 1995;  9 353-354
  • 21 Mertzlufft F, Risch A, Seyfert U T. Der „TAS-Analyzer”.  Anaesthesist. 1997;  46 233-235
  • 22 Gibbs N M, Weightman W M, Thackray M, Michalopolous N. Evaluation of the TAS coagulation analyzer for monitoring heparin effect effects in cardiac surgical patients.  J Cardiothorac Vasc Anesth. 1998;  12 536-541
  • 23 Latini R, Masson S, de Angelis N, Anand I. Role of brain natriuretic peptide in the diagnosis and management of heart failure: Current concepts.  J Card Fail. 2002;  8 288-299
  • 24 Marecaux G, Pinsky M R, Dupont E, Kahn R J, Vincent J L. Blood lactate levels are better prognostic indictors than TNF and IL-6 levels in patients with septic shock.  Intensive Care Med. 1996;  22 404-408
  • 25 Bakker J, Coffernils M, Leon M, Gris O, Vincent J L. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock.  Chest. 1994;  99 956-962
  • 26 Boldt J, Kumle B, Suttner S, Haisch G. Point-of-Care (POC) testing of lactate in the intensive care patient.  Acta Anaesthesiol Scand. 2001;  45 194-199
  • 27 Slomovitz B M, Lavery R F, Tortella B J, Siegel J H, Bachl B L, Ciccone A. Validation of a hand-held lactate device in determination of blood lactate in critically injured patients.  Crit Care Med. 1998;  26 1523-1528
  • 28 Moran R F, Grenier R E. Effects of „standard” blood gas transport and storage conditions on electrolyte results with observations on reported hemoglobin measurement anomalies. In: Maas AHJ, Buckley BM, Manzoni A, Moran RF, Siggaard-Anderssen O, Sprokholt R. Methodology and Clinical Applications of Ion-Selective Electrodes. International Federation of Clinical Chemistry 1988 10
  • 29 Mahoney J J, Harvey J a, Wong R J, van Kessel A L. Changes in oxygen measurement when whole blood is stored in iced plastic or glas syringes.  Clin Chem. 1991;  37 1244-1248
  • 30 Rose V L, Dermott S C, Murray B F, McIver M M, High K A, Oberhardt B J. Decentralized testing for prothombin time and activated partial thromboplastin time using a dry chemistry portable analyzer.  Arch Pathol Lab Med. 1993;  117 611-617
  • 31 Naghibi F, Han Y, Dodds W J, Lawrence C E. Effects of reagent and instrument on prothrombin times, activated partial thromboplastin times and patients/control ratio.  Thromb Haemost. 1988;  59 455-460
  • 32 Nichols J H. Cost analysis of point-of-care laboratory testing.  Adv Pathol Lab Test. 1996;  9 282-297
  • 33 Tsai W W, Nash D B, Seamonds B, Weir G L. Point-of-care versus central laboratory testing: an econonic analysis in an academic medical center.  Clin Therapeut. 1994;  16 898-910
  • 34 DeCresce P R, Phillips D L, Howanawitz P J. Financial justification of alternate site testing.  Arch Pathol Lab Med. 1995;  119 898-901
  • 35 Fiallos M R, Hanhan U A, Orlowski J P. Point-of-Care testing.  Pediat Crit Care. 2001;  48 589-599

Prof. Dr. Joachim Boldt

Klinikum der Stadt Ludwigshafen, Klinik für Anaesthesiologie und Operative Intensivmedizin

Bremserstr. 79

67063 Ludwigshafen am Rhein