TumorDiagnostik & Therapie 2003; 24(1): 21-25
DOI: 10.1055/s-2003-37563
Übersicht/Review
© Georg Thieme Verlag Stuttgart · New York

Tumor Cell Dissemination in Solid Tumors: Clinical Usefulness of Diagnostic Approaches, Prognostic Significance, and Therapeutical Options

Tumorzelldisseminierung in soliden Tumoren: Durchführbarkeit der diagnostischen Fortschritte, Prognostik und therapeutische MöglichkeitenS.  Kasimir-Bauer1
  • 1Innere Klinik und Poliklinik (Tumorforschung), Universitätsklinik Essen, 45122 Essen
Further Information

Publication History

Publication Date:
03 March 2003 (online)

Zusammenfassung

Auch nach vollständiger Entfernung des Primärtumors und fehlendem Nachweis einer Metastasierung mit konventionellen diagnostischen Verfahren zu diesem Zeitpunkt besteht für eine Vielzahl von Karzinompatienten ein deutliches Risiko, Fernmetastasen zu entwickeln. Diese Fernrezidive sind nach dem heutigen Kenntnisstand auf disseminierte Tumorzellen zurückzuführen, die sich frühzeitig vom Primärtumor gelöst haben, sich in anderen Organen ansiedeln und dort zum Ausgangspunkt einer Metastase werden können. Da diese Zellen bisher weder durch hochauflösende bildgebende Diagnoseverfahren noch durch die klassische Histopathologie nachweisbar sind, wurden in den letzten Jahren sensitive immunzytochemische und molekulare Methoden entwickelt, die den Nachweis von einer Tumorzelle unter 1 × 106 normalen Zellen ermöglichen. Obwohl das Vorliegen dieser Zellen - z. B. im Knochenmark als Indikatororgan - in einer Reihe von Tumoren epithelialer Herkunft nachgewiesen wurde, und als relevanter Prognosefaktor angesehen wird, variieren die Ergebnisse einzelner Studien durch die Verwendung verschiedener Antikörper und unterschiedlich sensitiver Testsysteme, was einen Vergleich der Studien erschwert. Eine allgemeingültige Methodik zum Nachweis und zur Charakterisierung disseminierter Zellen gibt es zurzeit noch nicht. Obwohl die Immunzytochemie unter Verwendung von Antikörpern gegen Zytokeratine als Zellgerüst epithelialer Zellen zur Zeit am häufigsten Anwendung findet, gibt es auch hier kritische Variablen, die standardisiert werden müssen, um den Nachweis disseminierter Tumorzellen in die klinische Routine zu integrieren. Dieser Artikel gibt einen Überblick über methodische Aspekte zum Nachweis und zur Charakterisierung disseminierter Tumorzellen von soliden Tumoren im Hinblick auf die Durchführbarkeit dieser Techniken im klinischen Alltag, die klinische Relevanz und mögliche Therapieoptionen.

Abstract

Besides early detection and surgical therapy of the primary tumor, mortality from solid malignant tumors has remained high and even in modern chemoradiation protocols a high number of carcinoma patients experiences tumor recurrences. The major reason for relapse is the hematogeneous or lymphatic spread of occult tumor cells which can arise before diagnosis of primary tumor growth at an early stage and which is regularly underestimated by currently available clinical and pathologic staging procedures. To improve the diagnosis of the occult stage of early metastases, sensitive immunohistochemical and molecular techniques were developed to facilitate the detection of isolated carcinoma cells in mesenchymal organs like bone marrow or lymph nodes using monoclonal antibodies against epithelium-specific proteins. Several studies demonstrated that the detection of isolated disseminated tumor cells in the bone marrow is an independent prognostic variable in breast, colorectal, gastric, and non-small-cell lung cancer but the comparison of the results becomes difficult due to lack of a standardized protocol. At present immunocytochemistry, using antibodies targeting a broad number of cytokeratins, with a sensitivity of one carcinoma cell among one million mononuclear bone marrow cells, seems to be the method of choice. But there are still some variables which have to be standardized to integrate the detection and characterization of disseminated tumor cells in clinical routine. The present review focuses on methodological aspects for identification and characterization of tumor cells, the clinical relevance of diagnostic approaches with their impact on treatment of minimal residual disease.

References

  • 1 Pantel K, Cote R J, Fodstad O. Detection and clinical importance of micrometastatic disease.  J Natl Cancer Inst. 1999;  91 1113-1124
  • 2 Braun S, Pantel K. Micrometastatic bone marrow involvement: detection and prognostic significance.  Med Oncol. 1999;  16 154-165
  • 3 Müller P, Schlimok G. Bone marrow “micrometastases” of epithelial tumors: detection and clinical relevance.  J Cancer Res Clin Oncol. 2000;  126 607-618
  • 4 Liefers G J, Cleton-Jansen A M, van de Velde C J, Hermans J, van Krieken J H, Cornelisse C J, Tollenaar R A. Micrometastases and survival in stage II colorectal cancer.  New Engl J Med. 1998;  339 223-228
  • 5 Cote R J, Peterson H F, Chaiwun B, Gelber R D, Goldhirsch A, Castiglione-Gertsch M, Gusterson B, Neville A M. for the International Breast Cancer Study Group . Role of immunohistochemical detection of lymph-node metastases in management of breast cancer.  Lancet. 1999;  354 896-900
  • 6 Kubuschok B, Passlick B, Izbicki J R, Thetter O, Pantel K. Disseminated tumor cells in lymph nodes as a determinant for survival in surgically resected non-small-cell lung cancer.  J Clin Oncol. 1999;  17 19-24
  • 7 Fidler I J, Hart I R. Biological diversity in metastatic neoplasms: Origin and implications.  Science. 1982;  217 998-1003
  • 8 Weiss L. A mechanism for the destruction of cancer cells in the microvasculature. In: Rabes H, Peters PE (ed) Metastasis: Basic research and its clinical applications. Basel; Karger 1992: 242-249
  • 9 Kleinman M B, Wiley E L, Guo M, Rademaker A W, Villa M, Tallman M S, Newman S B, Gordon L I, Winter J N. Immunohistochemical detection of breast cancer cells in paired peripheral blood progenitor cell specimens collected after cytokine or cytokine and myelosuppressive chemotherapy.  Bone Marrow Transplantat. 1999;  23 1297-1301
  • 10 Pedrazzoli P, Lanza A, Battaglia M, Da Prada G A, Zambelli A, Perotti C, Ponchio L, Salvaneschi L, Robustelli della Cuna G. Negative immunomagnetic purging of peripheral blood stem cell harvests from breast carcinoma patients reduces tumor cell contamination while not affecting hematopoietic recovery.  Cancer. 2000;  88 2758-2765
  • 11 Kasimir-Bauer S, Mayer S, Bojko P, Borquez D, Neumann R, Seeber S. Survival of tumor cells in stem cell preparations and bone marrow of patients with high-risk or metastatic breast cancer after receiving dose-intensive or high-dose chemotherapy.  Clin Cancer Res. 2001;  71 1582-1588
  • 12 Sharp J G, Kessinger A, Vaughan W P, Mann S, Crouse D A, Dicke K, Masih A, Weisenburger D D. Detection and clinical significance of minimal tumour cell contamination in peripheral stem cell harvests.  Int J Cell Cloning. 1992;  10 (suppI 1) 92
  • 13 Stadtmauer E A, Tsai D E, Sickles C, Mick R, Luger S M, Porter D L, Mangan K F, Schuchter L M, Schuster S J, Loh E Y, Magee D A, Sachs R A, Wall M E, Moore J, Buzby G P, Zaleta E, Kamoun M, Silberstein L E. Stem cell transplantation for metastatic breast cancer: analysis of tumor contamination.  Med Oncol. 1999;  16 279-288
  • 14 Simpson S J, Vachula M, Kennedy M J, Kaizer H, Coon J S, Ghalie R, Williams S, van Epps D. Detection of tumor cells in the bone marrow, peripheral blood, and apheresis products of breast cancer patients using flow cytometry.  Exp Hematol. 1995;  23 1062-1068
  • 15 Vredenburgh J J, Silva O, Tyer C, DeSombre K, Abou-Ghalia A, Cook M, Layfield L, Peters W P, Bast R C. A comparison of immunohistochemistry, two-color immunofluorescence, and flow cytometry with cell sorting for the detection of micrometastatic breast cancer in the bone marrow.  J Hematother. 1996;  5 57-62
  • 16 Höchtlen-Vollmar W, Gruber R, Bodemüller H, Felber E, Lindemann F, Passlick B, Schlimok G, Pantel K, Riethmüller G. Occult epithelial tumor cells detected in bone marrow by an enzyme immunoassay specific for cytokeratin 19.  Int J Cancer. 1997;  70 396-400
  • 17 Traweek S T, Liu J, Battifora H. Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction.  J Clin Oncol. 1993;  12 475-482
  • 18 Krismann M, Todt B, Schröder J, Gareis D, Müller K-M, Seeber S, Schütte J. Low specificity of cytokeratin 19 reverse transcriptase-polymerase chain reaction analyses for detection of hematogenous lung cancer dissemination.  J Clin Oncol. 1995;  13 2769-2775
  • 19 Zippelius A, Kufer P, Honold G, Köllermann M W, Oberneder R, Schlimok G, Riethmüller G, Pantel K. Limitations of reverse-transcriptase polymerase chain reaction analyses for detection of micrometastatic epithelial cancer cells in bone marrow.  J Clin Oncol. 1997;  15 2701-2708
  • 20 Taylor-Papadimitriou J, Peterson J A, Arklie J, Burchell J, Ceriani R L, Bodmer W F. Monoclonal antibodies to epithelium-specific components of the human milk fat globule membrane: production and reaction with cells in culture.  Int J Cancer. 1981;  28 17-31
  • 21 Pantel K, Schlimok G, Angstwurm M, Weckermann D, Schmaus M, Gath H, Passlick B, lzbicki J R, Riethmüller G. Methodological analysis of immunocytochemical screening for disseminated epithelial tumor cells in bone marrow.  J Hematother. 1994;  3 165-173
  • 22 Braun S, Müller P, Hepp F, Schlimok G, Riethmüller G, Pantel K. Re: Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status.  J Natl Cancer Inst. 1998;  90 1099-1101
  • 23 Brugger W, Bühring H J, Grünebach F, Vogel W, Kaul S, Müller P, Brümmendorf T H, Ziegler B L, Rappold I, Brossart P, Scheding S, Kanz L. Expression of MUC-1 epitopes on normal bone marrow: implications for the detection of micrometastatic tumor cells.  J Clin Oncol. 1999;  17 1535-1544
  • 24 Schaller G, Fuchs I, Pritze W, Ebert A, Herbst H, Pantel K, Weitzel H, Lengyl E. Elevated keratin 18 protein expression indicates a favorable prognosis in patients with breast cancer.  Clin Cancer Res. 1996;  2 1879-1885
  • 25 Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, lzbicki R, Riethmüller G. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells.  J Natl Cancer Inst. 1993;  85 1419-1424
  • 26 Kasimir-Bauer S, Oberhoff C, Sliwinska K, Neumann R, Schindler A E, Seeber S. Evaluation of different methods for the detection of minimal residual disease in blood and bone marrow of patients with primary breast cancer: Importance for clinical use?.  Breast Cancer Res Treat. 2001;  69 (2) 123-132
  • 27 Borgen E, Naume B, Nesland J M, Kvalheim G, Beiske K, Fodstad O, Diel I, Solomayer E-F, Theocharus P, Coombes R C, Smith B M, Wunder E, Marolleau J-P, Garcia J, Pantel K. Standardisation of the immunocytochemical detection of cancer cells in bone marrow and blood: I. Establishment of objective criteria for the evaluation of immunostained cells.  Cytotherapy. 1999;  1 377-388
  • 28 Naume B, Borgen E, Beiske K, Herstad T-K, Ravnas G, Renolen A, Trachsel S, Thrane-Stehen K, Funderud S, Kvalheim G. Detection of isolated breast carcinoma cells in peripheral blood or bone marrow by immunomagnetic techniques.  J Hematother. 1997;  6 103-113
  • 29 Martin V M, Siewert C, Scharl A, Harms T, Heinze R, Öhl S, Radbruch A, Miltenyi S, Schmitz J. Immunomagnetic enrichment of disseminated epithelial tumor cells from peripheral blood by MACS.  Exp Hematol. 1998;  26 252-264
  • 30 Naume B, Borgen E, Nesland J M, Beiske K, Gilen E, Renolen A, Ravnas G, Qvist H, Karesen R, Kvalheim G. Increased sensitivity for detection of micrometastases in bone-marrow/peripheral-blood stem-cell products from breast-cancer patients by negative immunomagnetic separation.  Int J Cancer. 1998;  78 556-560
  • 31 Braun S, Cevalti S, Assemi C, Janni W, Kentenich C RM, Schindlbeck C, Rjosk D, Hepp F. Comparative analysis of micrometastasis to the bone marrow and lymph nodes of node-negative breast cancer patients receiving no adjuvant therapy.  J Clin Oncol. 2001;  19 1468-1475
  • 32 Passlick B, Kubuschok B, Jakob R, Izbicki J R, Thetter O, Pantel K. Isolated tumor cells in bone marrow predict reduced survival in node-negative non-small cell lung cancer.  Ann Thorac Surg. 1999;  68 2053-2058
  • 33 Hermanek P. pTNM and residual tumor classifications: problems of assessment and prognostic significance.  World J Surg. 1995;  19 184-190
  • 34 Cote R J, Hawes D, Chaiwun B, Beattie E J. Detection of occult metastases in lung carcinomas: progress and implications for lung cancer staging.  J Surg Oncol. 1998;  69 265-274
  • 35 Stadtmauer E A, O'Neill A, Goldstein U, Crilley P, Mangan K F, Ingle J N, Brodsky I, Martino S, Lazarus H M, Erban J, Sickles C, Glick J H. and the Philadelphia Bone Marrow Transplant Group . Conventional-Dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoictic stem-cell transplantation for metastatic breast cancer.  New Engl J Med. 2000;  342 1069-1076
  • 36 Rodenhuis S, Bontenbal M, Beex L, van der Wall E, Richel D, Nooij M, Voest E, Hupperets P, Westermann A, Dalesio O, de Vries E. Randomized phase III study of high-dose chemotherapy with cyclophosphamide, Thiotepa and Carboplatin in operable breast cancer with 4 or more axillary lymph nodes.  Proc Am Soc Clin Oncol. 2000;  19 74a ,  (abstr 286)
  • 37 Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F, Sommer H L, Pantel K. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients.  J Clin Oncol. 2000;  18 80-86
  • 38 Braun S, Hepp F, Sommer H L, Pantel K. Tumor-antigen heterogeneity of disseminated breast cancer cells: Implications for immunotherapy of minimal residual disease.  Int J Cancer. 1999;  84 1-5
  • 39 Braun S, Schlimok G, Heumos I, Schaller G, Riethdorf L, Riethmüller G, Pantel K. erbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I - III breast cancer patients.  Cancer Res. 2001;  61 1890-1895
  • 40 Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz C C, Dantis L, Sklarin N T, Seidman A D, Hudis C A, Moore J, Rosen P P, Twaddell T, Henderson I C, Norton L. Phase II study of weekly intravenous recombinant humanized anti-p185-BER2 monoclonal antibody in patients with HER2/neu overexpressing metastatic breast cancer.  J Clin Oncol. 1996;  14 737-744
  • 41 Braun S, Hepp F, Kentenich C RM, Janni W, Pantel K, Riethmüller G, Sommer H L. Monoclonal antibody therapy with edrecolomab in breast cancer patients: Monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow.  Clin Cancer Res. 1999;  5 3999-4004
  • 42 Riethmüller G, Holz E, Schlimok G, Schmiegel W, Raab R, Höffken R, Gruber R, Funke I, PichImaier H, Hirche H, Buggisch P, Witte J, PichImayr R. Monoclonal antibody therapy for resected Dukes'C colorectal cancer: Seven-year outcome of a multicenter randomized trial.  J Clin Oncol. 1998;  16 1788-1794
  • 43 Mohr M, Hilgenfeld E, Fietz T, Hoppe B, Koenigsmann M, Hoffmann M, Knauf W U, Cassens U, Sibrowski W, Kienast J, Thiel E, Berdel E. Efficacy and safety of simultaneous immunomagnetic CD34+ cell selection and breast cancer cell purging in peripheral blood progenitor cell samples used for hematopoietic rescue after high-dose therapy.  Clin Cancer Res. 1999;  5 1035-1040

Dr. rer. nat. Sabine Kasimir-Bauer

Innere Klinik und Poliklinik (Tumorforschung), Universitätsklinikum Essen

Hufelandstraße 55

45122 Essen

Phone: (+49) 201-723-3112

Fax: (+49) 201/723-5736

Email: sabine.kasimir-bauer@uni-essen.de

    >