Subscribe to RSS
DOI: 10.1055/s-2003-36794
N-Alkoxy-4-methyl-5-(p-anisyl)thiazole-2(3H)thiones - New Precursors for Visible Light- or Thermally-Induced Alkoxyl Radical Reactions in Synthesis
Publication History
Publication Date:
22 January 2003 (online)
Abstract
Visible light-initiated or thermally induced N-O homolysis of hitherto unknown 4-methyl-5-(p-anisyl)-substituted N-alkoxythiazolethiones furnishes alkoxyl radicals, which have been applied in the diastereoselective synthesis of bicyclic tetrahydrofuran rac-5 (5-exo-trig cyclization), formation of erythrose derivative 8 (β-C,C cleavage), and the preparation of bromoalcohol 10 (via selective 1,5-H-translocation), optionally under tin-free conditions.
Key words
alkoxyl radical - cyclization - fragmentation - hydrogen atom transfer - thiazolethione
- 1 For a review see:
Hartung J.Gottwald T.pehar K. Synthesis 2002. p.1469 ; and references cited therein - 2
Beckwith ALJ.Hay BP. J. Am. Chem. Soc. 1988, 110: 4415 - 3
Hartung J.Gallou F. J. Org. Chem. 1995, 60: 6706 -
4a
Pasto DJ.Cottard F. Tetrahedron Lett. 1994, 35: 4303 -
4b
Horner JH.Choi S.-Y.Newcomb M. Org. Lett. 2000, 2: 3369 -
4c
Petrovic G.Saicic RN.Cekovic Z. Synlett 1999, 635 - 5
Hartung J.Hiller M.Schwarz M.Svoboda I.Fuess H. Liebigs Ann. Chem. 1996, 2091 - 6
Kim S.Lee TA.Song Y. Synlett 1998, 471 - 7
Kim S.Lim CJ.Song S.-E.Kang H.-Y. Synlett 2001, 688 - 8
Hartung J. Eur. J. Org. Chem. 2001, 619 - 9
Hartung J.Schwarz M. Org. Synth. 2002, 79: 228 - 10
Hartung J.Schwarz M.Svoboda I.Fuess H.Duarte M.-T. Eur. J. Org. Chem. 1999, 1275 - 11
Hartung J.Kneuer R.pehar K. Chem. Commun. 2001, 799 - 15
Parr PG.Pearson RG. J. Am. Chem. Soc. 1983, 105: 7512 - 16 For a review see:
Walter W.Schaumann E. Synthesis 1971, 111 - 17
Barton DHR.Crich D.Kretzschmar G. J. Chem. Soc., Perkin Trans. 1 1986, 39 - 18
Hartung J.Hiller M.Schmidt P. Chem.-Eur. J. 1996, 2: 1014 - 19
Hartung J.Kopf TM.Kneuer R.Schmidt P. C. R. Acad. Sci. 2001, 649 - 20
Chittenden GJF. Carbohydr. Res. 1992, 242: 297 - For reviews and related work on alkoxyl radical induced β-C,C cleavages:
-
23a
Kalvoda J.Heusler K. Synthesis 1985, 501 -
23b
Tsang R.Fraser-Reid B. J. Am. Chem. Soc. 1986, 108: 8102 -
23c
Beckwith ALJ.Hay BP.Williams GM. J. Chem. Soc., Chem. Commun. 1989, 1202 -
23d
Curran DP. In Comprehensive Organic Synthesis Vol. 4:Trost BM.Fleming I. Pergamon Press; New York: 1991. p.812-818 -
23e
Dowd P.Zhang W. Chem. Rev. 1993, 93: 2091 -
23f
Batsanov AS.Begley MJ.Fletcher RJ.Murphy JA.Sherburn MS. J. Chem. Soc., Perkin Trans. 1 1995, 1281 -
23g
Francisco CG.Martin CG.Suárez E. J. Org. Chem. 1998, 63: 2099 -
23h
Wilsey S.Dowd P.Houk KN. J. Org. Chem. 1999, 64: 8801 -
23i
Hartung J.Gottwald T.Kneuer R. Synlett 2001, 749 -
23j
Suárez E.Rodriguez MS. In Radicals in Organic Synthesis Vol. 2:Renaud P.Sibi MP. Wiley-VCH; Weinheim: 2001. p.440-454 -
24a
Barton DHR.Beaton JM.Geller LE.Pechet MM. J. Am. Chem. Soc. 1961, 83: 4076 -
24b
Freidlina RK.Terent’ev AB. In Advances in Free-Radical Chemistry Vol. 6:Williams GH. Heyden; London: 1980. p.1-63 -
24c
Crich D.Huang X.Newcomb M. J. Org. Chem. 2000, 65: 523
References
Hartung, J.; Gottwald, T.; pehar, K. unpublished results.
13Satisfactory analytical data were obtained for all new compounds in this study: N-hydroxy-4-methyl-5-(p-anisyl)thiazole-2(3H)thione, thiazolethiones 1, 3a-d, rac-4, 7, 9, and products 6, 8 and 10 from alkoxyl radical reactions.
14N-Ethoxy-4-methyl-5-(p-methoxyphenyl)thiazole-2(3H)thione(3a): A suspension of N-hydroxy-4-methyl-5-(p-anisyl)thiazole-2(3H)thione (279 mg, 1.10 mmol) in CH3OH (2 mL) was treated with a solution of tetraethyl-ammonium hydroxide in CH3OH (0.73 mL, 1.5 M, 1.10 mmol). The solvent was evaporated and the remaining salt was freeze-dried. The residue was taken up in dry DMF (2 mL) and treated with ethyl iodide (2a, 156 mg, 0.07 mL, 1.00 mmol). The reaction mixture was stirred for 12 h at 20 °C. Afterwards, H2O (7 mL) and Et2O (5 mL) were added and the phases were separated. The aq phase was extracted with Et2O (2 × 5 mL). The combined organic phases were dried (MgSO4) and concentrated in vacuo to provide an oil which was crystallized from CH3OH to furnish 180 mg (0.64 mmol, 64%) of thione 3a: pale yellow solid, mp 133 °C, Rf = 0.34 [petroleum ether/Et2O = 2:1, (v/v)]. 1H NMR (400 MHz, CDCl3): δ = 1.46 (t, 3 H, 3 J = 7.1 Hz), 2.33 (s, 3 H), 3.84 (s, 3 H), 4.53 (q, 2 H, 3 J = 7.1 Hz), 6.94 (mc, 2 H), 7.24 (mc, 2 H). 13C NMR (100 MHz, CDCl3): δ = 12.1, 13.2, 55.4, 72.2, 114.6, 119.3, 122.6, 129.9, 132.2, 159.9, 178.8. UV/Vis (EtOH): λmax (lg ε) = 334 nm (4.46), 253 (3.85), 226 (4.20); MS (EI, 70 eV): m/z (%) = 281.1 (68) [M+], 237.0 (100) [C11H11NOS2 +], 178.1 (31) [C10H10OS+], 146.1 (36) [C10H10O+], 77.0 (18) [C6H5 +], 39.9 (12) [C3H4 +]. C13H15NO2S2 (281.39): calcd C, 55.49; H, 5.37; N, 4.98; S, 22.79. Found: C, 55.29; H, 5.52; N, 4.92; S, 22.32.
21Synthesis of 1,6-cis-8-bromomethyl-7-oxabicyclo[4.3.0]nonane rac-(5): [19] (i)Preparative scale. A degassed solution of rac-N-(cis-2-allylcyclohexyloxy)-4-methyl-5-(p-methoxyphenyl)thiazole-2(3H)thione rac-(4) (188 mg, 0.50 mmol) and BrCCl3 (934 mg, 4.71 mmol, 0.46 mL) in dry benzene (3 mL) was irradiated for 30 min in a Rayonet® photoreactor equipped with 350 nm-light bulbs. The solvent was partially removed and the residue was purified by column chromatography [SiO2, solvent: petroleum ether/Et2O = 5:1 (v/v)] to provide 76.7 mg of bromomethyl-substituted tetrahydrofuran rac-5 as colorless oil (0.35 mmol, 70%, 6,8-cis:6,8-trans = 72:28); Rf = 0.77 [SiO2, solvent: petroleum ether/Et2O = 5:1 (v/v)].(ii) NMR-Experiment: A degassed solution of thiazolethione rac-(4) (18.8 mg, 0.05 mmol) and BrCCl3 (93.4 mg, 0.47 mmol, 0.05 mL) in dry C6D6 (0.28 mL) was irradiated for 15 min with visible light (Osram® Power Star HQI/D, 250 W). After completion of the photoreaction (TLC-control), the yield of rac-5 (8.98 mg, 41.0 µmol, 82%, 6,8-cis: 6,8-trans = 72:28) was determined by integrating its NMR resonances versus added anisole as internal standard in C6D6 (0.5 mL).
224-Methyl-5-(p-anisyl)-2-(trichloromethylsulfanyl) thiazole(6): Rf = 0.77 [SiO2,
petroleum ether/acetone = 4:1, (v/v)]. 1H
NMR (250 MHz, CDCl3): δ = 2.59
(s, 3 H), 3.86 (s, 3 H), 6.99 (d, 2 H, J = 7.5 Hz), 7.41 (d,
2 H, J = 7.5
Hz). 13C NMR (63 MHz, CDCl3): δ = 16.3,
55.4, 114.4, 123.0, 130.6, 141.6, 150.3, 160.1, 182.5. UV/Vis
(CH3CN): λmax
(lg ε) = 324
nm (4.33). MS (EI, 70 eV): m/z (%) = 354.8
(15) [M+], 236.0 (100) [C11H10NOS2
+],
177.0 (42) [C10H9NOS2
+]. C12H10Cl3NOS2 (354.70):
calcd C, 40.64; H, 2.84; N, 3.95; S, 18.08. Found: C, 40.47; H,
2.77; N, 3.75; S, 17.52. HR-MS: calcd 352.9269, found 352.9269.