Anästhesiol Intensivmed Notfallmed Schmerzther 2003; 38(1): 14-26
DOI: 10.1055/s-2003-36558
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Toleranzentwicklung unter Opioidgabe - Molekulare Mechanismen und klinische Bedeutung

Development of Opioid Tolerance - Molecular Mechanisms and Clinical ConsequencesE.  Freye1 , L.  Latasch2
  • 1Klinik für Gefäßchirurgie und Nierentransplantation, Heinrich-Heine-Universitätsklinik, Düsseldorf
  • 2Abteilung für Anästhesiologie, Nordwest Krankenhaus, Frankfurt/Main
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
10. Januar 2003 (online)

Zusammenfassung

Eine unter langfristiger Opioidgabe gelegentlich zu beobachtende Wirkung ist die Toleranzentwicklung der analgetischen Wirkung. Dies geht mit einer Dosissteigerung einher und kann im Rahmen der Anästhesie, Intensivmedizin und Schmerztherapie beobachtet werden. Zwar liegt bei tumorbedingten Schmerzen in den meisten Fällen eine mit der Grunderkrankung einhergehende Zunahme der Schmerzintensität vor. Es gibt jedoch auch Fälle, bei denen sich im Rahmen einer medikamentösen Antinozizeption eine Toleranz auf das Opioid entwickelt. Als Auslöser kommen weniger pharmakokinetische Ursachen als vielmehr Adaptationsmechanismen an den mit dem Opioid interagierenden Bindestellen und die nach Bindung ausgelösten intrazellulären Prozesse infrage. So führt eine Desensibilisierung des Rezeptors zu einer verminderten Ansprechbarkeit auf das Opioid, „taucht der Opioidrezeptor” in das Zellinnere (Internalisierung) ab, wird die Nitritoxydsynthetase mit anschließender Bildung von dem pronozizeptiven NO aktiviert, führen Unterschiede in der Rezeptoraffinität verschiedener Opioide zu einer unterschiedlich schnellen Toleranzentwicklung, oder kann eine langfristige Benzodiazepingabe eine antiopioidartige Wirkung induzieren. Vorherrschender Mechanismus einer Toleranzentwicklung im anästhesiologischen Bereich sind jedoch intrazelluläre, durch das Opioid induzierte Aktivierungsprozesse (Phospholipase C, Proteinkinase C) die über den N-Methyl-D-Aspartat-(NMDA)-Rezeptor eine antiopioidartige Wirkung zur Folge haben. Um eine Toleranzentwicklung zu vermeiden bzw. ihr entgegenzutreten ist die zusätzliche Gabe von Liganden indiziert, die am NMDA-Rezeptor eine antagonistische Wirkung vermitteln (z. B. Dextromethorphan, Ketamin). Des Weiteren sollte das Konzept der multimodalen Analgesie verfolgt werden, indem die im Rahmen des operativen Eingriffs aktivierte Zyklooxygenase (COX-2), durch Coxibe gehemmt wird. Im Rahmen der Therapie chronischer Schmerzen kann ein Opioidwechsel (Opioidrotation) angezeigt sein, wenn trotz Dosissteigerung von Morphin der Schmerz nicht beherrschbar ist bzw. die Nebenwirkungen eine weitere Dosiserhöhung verbieten. So kann von Morphin auf Methadon, das auch am NMDA-Rezeptor bindet, oder auf wirkstärkere Liganden wie Fentanyl TTS oder Oxycodon umgestiegen werden. Die zu wählende Dosierung orientiert sich hierbei weniger an den Äquivalenztabellen als an der individuellen Wirkung. Eine Toleranzentwicklung im Rahmen der Analgosedierung kann durch die simultane Gabe eines α2-Agonisten (Clonidin, Dexmedetomidin), respektive durch ein intermittierendes Sistieren der Benzodiazepingabe hinausgezögert werden. Zwar weisen alle experimentelle Daten darauf hin, dass mit jeder Opioidgabe adaptive Prozesse einsetzen, die einer Toleranzentwicklung Vorschub leisten. Es sollte deswegen jedoch nicht auf eine Opioidgabe verzichtet werden, zumal eine Toleranzentwicklung mit Hilfe des Konzepts einer multimodalen Analgesie vermieden werden kann.

Abstract

Introduction: One often identified effect of opioid administration is that of the development of tolerance to the analgesic effect. While it is generally agreed that tolerance to opioid analgesia does occur, it does not appear to be a limiting factor. Dose escalation in chronic pain therapy is considered to be predominantly a consequence of increasing pain, which is a result of increasing nociceptive input as the disease progresses. The underlying cause of tolerance to opioids, however, as commonly identified in the ICU can be identified as an adaptation process. When the opioid is given continuously several causes of adaptation can be identified, all of which can be traced back to the cellular and molecular level. Receptor related changes involved in tolerance: Initial effects of opioid administration in most individuals are analgesia, sedation, nausea/vomiting, respiratory depression, pupillary constriction, constipation and euphoria or dysphoria. However, numerous studies and clinical experience suggest that tolerance to different opioid effects develop at different rates, which has been termed selective tolerance. While tolerance to nausea, vomiting, sedation, euphoria and respiratory depression occur rapidly, there is minimal development of tolerance to constipation and miosis. Such diversity suggest receptor-related differences in the speed of development of tolerance. In the ICU other compounds such as benzodiazepines, when given together with opioids, seem to speed up the rate of development of tolerance of the latter. Such an effect very likely is due to a reduction in activity of the descending inhibitory nervous system. In addition, there is surmountable data suggesting that the higher the intrinsic activity of the opioid at only one receptor site, lesser receptors are needed in order to induce a potent analgesic effect. As a net result the incidence of tolerance is less likely to become clinically apparent when potent ligands such as fentanyl or sufentanil are administered. N-methyl-D-aspartate (NMDA) activation, opioid receptor internalization and desensitization: An altered metabolism has little effect on the rate of development of tolerance. In chronic pain treatment with morphine, however, an increased ratio of the metabolite morphine-3-glucuronide, with antiopioid effects, to morphine-6-glucuronide is associated with staggering doses of the analgesic. Opioids which interact with µ- and/or κ-binding sites, demonstrate an adaptation process called desensitization which is due to a reduced interaction with the internal second messenger system called G-protein. This is only a short-lived phenomenon following binding of the ligand. Another underlying mechanism of tolerance development is that of internalization of the opioid receptors. This short-lived phenomenon, termed endocytosis, results in lesser binding sites available for the mediation of analgesia. Another and more relevant mechanism of long-term opioid binding is that of subsequent protein kinase C (PKC), phospholipase C (PLC) translocation and activation of nitric oxide synthetase (NOS). All of this contributes to a N-methyl-D-aspartate (NMDA) receptor activation with ensuing antiopioid effect and tolerance. Clinical consequences following the development of tolerance: Most likely genetic difference in opioid receptor synthesis and difference in their affinities for various ligands is the cause for the wide margin of dose variability in patients (genetic polymorphism). Once tolerance to the analgesic effect of the opioid is observed and in order to avoid unnecessary further development of tolerance, simultaneous administration of other receptor mediated analgesics is advocated. In the perioperative period strategies like the multimodal analgesic concept is fostered. It consists of the simultaneous administration of low-dose ketamine, co-administration of an α2-agonist, and the administration of a selective COX-2 inhibitor (refecoxib, parecoxib) respectively. In chronic pain therapy combined administration with either dextromethorphane, or opioid rotation of a more potent ligand such as methadone, fentanyl TTS or oxycodone is suggested. Since conversion factors are not reliable in opioid rotation, it is best to start off with 50 % of the equivalent dose and rapidly titrate to the desired effect. With regard to tolerance development in the ICU, co-administration of an α2-agonist (clonidine, dexmedetomidine), and daily intermittent cessation of benzodiazepine administration are advocated. Since continuous dosing of an opioid, commonly handled in the ICU setting is more likely to induce tolerance, intermittent administration is advocated. Taken together, there is an abundance of experimental data which suggests, that with every dose of an opioid several adaptive processes are being initiated. Due to genetic polymorphism such adaptation is seen clinically with striking individual different dosages, the degree and the time of onset of tolerance. Although tolerance development may result in staggering doses of an opioid, there is no reason to evade the use of such agents. On the contrary, the concept of multimodal analgesia consisting of the simultaneous use of analgesics with a different mode of action can counteract tolerance development.

Literatur

  • 1 Aantaa R, Kallio A. et al . Dexmedetomidine, a novel alpha2-adrenergic agonist. A review of its pharmacodynamic profile.  Drugs Future. 1993;  18 49-56
  • 2 Abdel-Ghaffar M E, Abdulatif M. et al . Epidural ketamine reduces post-operative epidural PCA consumption of fentanyl/bupivacaine.  Can J Anaesth. 1998;  45 103-109
  • 3 Adams R E, Wooten G F. Is morphine dependence mediated exclusively by the mu receptor?.  Neurochem Res. 1993;  18 1041-1045
  • 4 Adriaenssens G, Vermeyen K M. et al . Postoperative analgesia with i. v. patient-controlled morphine: effect of adding ketamine.  Br J Anaesth. 1999;  83 393-396
  • 5 Arden J, Segredo V. et al . Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged mu-opioid receptor expressed in HEK 293 cells.  J Neurochem. 1995;  65 1636-1645
  • 6 Basbaum A I. Insights into the development of opioid tolerance.  Pain. 1995;  61 349-352
  • 7 Blake A D, Bot G. et al . Structure-function analysis of the cloned opiate receptors. Peptide and small molecule interaction.  Chem Biol. 1996;  3 967-972
  • 8 Bruera W, MacMillan K. et al . The cognitive effects of the administration of narcotic analgesics in patients with cancer pain.  Pain. 1989;  39 13-16
  • 9 Buzas B, Rosenberge R J. et al . Mu and delta opioid receptor gene expression after chronic treatment with opioid agonist.  Neuroreport. 1996;  7 1505-1508
  • 10 Chakrabarti S, Yang W. et al . The mu-opioid receptor down-regulates differently from the delta-opioid receptor: requirement of a high affinity receptor/G protein complex formation.  Mol Pharmacol. 1997;  52 105-113
  • 11 Chia Y Y, Liu K. et al . The preoperative administration of intravenous dextromethorphan reduces postoperative morphine consumption.  Anesth Analg. 1999;  89 748-752
  • 12 Chia Y Y, Liu K. et al . Intraoperative high dose fentanyl induces postoperative fentanyl tolerance.  Can J Anaesth. 1999;  46 872-877
  • 13 Codd E E, Shank R P. et al . Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesics: structural determinants and role in antinociception.  J Pharmacol and Expt Ther. 1995;  274 1263-1270
  • 14 Collin E, Poulain P. et al . Is disease progression the major factor in morphine „tolerance” in cancer pain treatment?.  Pain. 1993;  55 319-326
  • 15 Cooper D, Mons M. et al . Adenylyl cyclases and the interaction between calcium and cAMP signaling.  Nature. 1995;  373 421-424
  • 16 Cooper D W, Lindsay S L. et al . Does intrathecal fentanyl produce acute cross-tolerance to i. v. morphine?.  Br J Anaesth. 1997;  78 311-313
  • 17 Coyle N. Continuity of care for cancer patient with chronic pain.  Cancer. 1989;  63 2289-2293
  • 18 Coyle N, Adelhardt J. et al . Character of terminal illness in the advanced cancer patient: pain and other symptoms during the last four weeks of life.  J Pain Symp Manag. 1990;  5 83-93
  • 19 Cvejic S, Trapaidze N. et al . Thr353, located within the COOH-terminal tail of the delta opiate receptor, is involved in receptor down-regulation.  J Biol Chem. 1996;  271 4073-4076
  • 20 de Stoutz N D, Bruera E. et al . Opioid rotation for toxicity reduction in terminal cancer patients.  J Pain Symtom Manage. 1995;  10 378-384
  • 21 DeLander G E, Portoghese P S. et al . Role of spinal µ opioid receptors in the development of morphine tolerance and dependence.  J Pharmacol Exp Ther. 1984;  231 91-96
  • 22 Dhawan B N, Cesselin F. et al . International Union of Pharmacology. XII. Classification of opioid receptors.  Pharmacol Rev. 1996;  48 567-592
  • 23 Dunbar S, Yaksh T L. Concurrent spinal infusion of MK801 blocks spinal tolerance and dependence induced by chronic intrathecal morphine in the rat.  Anesthesiology. 1996;  84 1177-1188
  • 24 Duttaroy A, Yoburn B C. The effect of intrinsic efficacy on opioid tolerance.  Anesthesiology. 1995;  82 1226-1236
  • 25 Eisenach J C, DuPen S. et al . The epidural clonidine study group. Epidural clonidine analgesia for intractable cancer pain.  Pain. 1995;  61 391-399
  • 26 Eisenberg E, Pud D. Can patients with chronic neuropathic pain be cured by acute administration of the NMDA receptor antagonist amantadine?.  Pain. 1998;  74 37-39
  • 27 Elliott K, Minami N. et al . The NMDA receptor antagonists, LY274614 and MK-801, and the nitric oxide synthase inhibitor, NG-nitro-L-arginine, attenuate analgesic tolerance to the mu-opioid morphine but not to kappa opioids.  Pain. 1994;  56 69-75
  • 28 Evans C J, Keith D E. et al . Cloning of a delta opioid receptor by functional expression.  Science. 1992;  285 1952-1955
  • 29 Feng J, Kendig J J. Synergistic interactions between midazolam and alfentanil in isolated neonatal rat spinal cord.  Br J Anaesth. 1996;  77 375-380
  • 30 Foley K. Controversies in cancer pain: medical perspectives.  Cancer. 1989;  63 2257-2265
  • 31 Foley K M. Changing concepts of tolerance to opioids.  In: Chapmann CR, Foly KM Current and Emerging Isues in Cancer Pain: Research and Practice. New York; Raven Press 1993: 331-350
  • 32 Franklin P, Hoss W. Opiates stimulate low Km GTPase in brain.  J Neurochem. 1984;  43 1132-1135
  • 33 Freye E. Opioide in der Medizin. Berlin, Heidelberg, New York; Springer 2001
  • 34 Garthwaite J, Garthwaite G. et al . NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices.  Eur J Pharmacol. 1989;  172 413-416
  • 35 Gies E K, Peters D M. et al . Regulation of mu opioid receptor mRNA levels by activation of protein kinase C in human SH-SY5Y neuroblastoma cells.  Anesthesiology. 1997;  87 1127-1138
  • 36 Grace R F, Power I. et al . Preoperative dextrometorphan reduces intraoperative but not postoperative morphine requirements after laparotomy.  Anesth Analg. 1998;  87 1135-1138
  • 37 Green P G, Lee N M. Dynorphin-A-(1-13) attenuates withdrawal in morphine-dependent rats: effect of route of administration.  Eur J Pharmacol. 1988;  145 267-272
  • 38 Guignard B. et al . Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirements.  Anesthesiology. 2000;  93 409-417
  • 39 Harada H, Ueda H. et al . Phosphorylated mu-opioid receptor purified from rat brains lacks functional coupling with Gi1, a GTP-binding protein in reconstituted lipid vesicles.  Neurosci Lett. 1990;  113 47-49
  • 40 Harrison C, Smart D. et al . Stimulatory effects of opioids.  Br J Anaesth. 1998;  81 20-28
  • 41 Hayashi Y, Guo T Z. et al . Hypnotic and analgesic effects of the α2-adrenergic agonist dexmedetomidine in morphine-tolerant rats.  Anesth Analg. 1996;  83 606-610
  • 42 Hofbauer R, Tesinsky P. et al . No reduction in the sufentanil requirement of elderly patients undergoing ventilatory support in the medical intensive care unit.  Eur J Anaesthesiol. 1999;  16 702-707
  • 43 Höllt V, Herz A. In vivo receptor occupation by opiates and correlation to the pharmacological effect.  Federation Proc. 1978;  37 158-161
  • 44 Hovav E, Weinstock M. Temporal factors influencing the development of acute tolerance to opiates.  J Pharm Exp Ther. 1987;  242 251-256
  • 45 Hudspith M J. Glutamate: a role in normal brain function.  Br J Anaesth. 1997;  78 731-747
  • 46 Ilkjaer S, Bach L F. et al . Effect of preoperative oral dextrometorphan on immediate and late postoperatve pain and hyxperalgesia after total abdominal hysterectomy.  Pain. 2000;  86 19-24
  • 47 Jhamandas K H, Sutak M. et al . Antinociceptine and morphine modulatory actions of spinal orphanin FQ.  Can J Physiol Pharmacol. 1998;  76 314-324
  • 48 Johnson P, Wang J. et al . Expressed mu opiate receptor couples to adenylate cyclase and phosphatidyl inositol turnover.  Neuroreport. 1994;  5 507-509
  • 49 Jordan B, Cvejic S. et al .Agonist mediated internalization of the mu, delta and kappa opioid receptor types. Annual Meeting Society of Neuroscience, Society of Neuroscience 1997
  • 50 Jordan B, Devi L A. Molecular mechanism of opioid receptor signal transduction. Recent advances in opioid pharmacology.  Br J Anaesth. 1996;  81 12-19
  • 51 Kamei J, Iwamoto Y. et al . Involvement of delta 1-opioid receptor antagonism in the antituissive effect of delta-opioid antagonists.  J Pharmacol Expt Ther. 1994;  251 291-294
  • 52 Kanner R M, Foley K M. Pattern of narcotic drug use in cancer pain clinic.  Ann NY Acad Sci. 1981;  362 162-172
  • 53 Keith D, Murray S. et al . Morphine activates opioid receptors without causing their rapid internalization.  J Biol Chem. 1996;  271 19 021-19 024
  • 54 Kieffer B, Befort K. et al . The delta-opioid receptor: isolation of cDNA by expression cloning and pharmacological characterization.  Proc Nat Acad Scie USA. 1992;  89 12 048-12 052
  • 55 Kissin I, Brown P T. et al . Does midazolam inhibit the development of acute tolerance to the analgesic effect of alfentanil?.  Life Sci. 1992;  52 55-60
  • 56 Kissin I, Lee S S. et al . Time course characteristics of acute tolerance development to continuously infused alfentanil in rats.  Anesth Analg. 1996;  83 600-605
  • 57 Kissin I, Lee S S. et al . Effect of midazolam on development of acute tolerance to alfentanil: The role of pharmacokinetic interactions.  Anesth Analg. 1997;  85 182-187
  • 58 Kissin I, Vinik H R. et al . Alfentanil potentiates midazolam-induced unconsciousness in subanalgesic doses.  Anesth Analg. 1990;  71 65-69
  • 59 Kleckner N W, Dingledine R. Requirement of glycine in ativation of NMDA receptors expressed in Xenoptus oocytes.  Science. 1988;  241 835-837
  • 60 Koinig H, Wallner T. et al . Magnesium sulfate reduces intra- and postoperative analgesic requirements.  Anesth Analg. 1998;  87 206-210
  • 61 Kolesnikov Y A, Pick C G. et al . Blockade of tolerance to morphine but not to κ opioids by a nitric oxide synthese inhibitor.  Proc Natl Acad Sci USA. 1993;  90 5162-5166
  • 62 Kreek M J. Medical safety and side effects of methadone in tolerant individuals.  JAMA. 1973;  233 665-668
  • 63 Kress J P, Pohlmann A S. et al . Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation.  N Engl J Med. 2000;  34 1471-1477
  • 64 Kristensen K, Christensen C B. et al . The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine.  Life Sci. 1995;  56 45-50
  • 65 Law P, McGinn T. et al . Analysis of delta opioid receptor activities stably expressed in CHO cells lines: Function of receptor density?.  J Pharmacol Expt Ther. 1994;  271 1686-1694
  • 66 Lee S C, Wang J J. et al . Nalbuphine Coadministered with Morphine Prevents Tolerance and Dependence.  Anesth Analg. 1997;  84 810-815
  • 67 Leslie F M. Methods used for the study of opioid receptors. Pharmacological Reviews.  Pharmacol Rev. 1987;  39 197-249
  • 68 Light A B, Torrance E G. Opium addiction.  Arch Int Med. 1929;  44 1-16
  • 69 Lutfy K, Houssain S M, Khaliq I, Maidment N T. Orphanin TQ/nociceptin attenuates the development of morphine tolerance in rats.  Br J Pharmacol. 2001;  134 529-534
  • 70 Luger T J, Hayashi T. et al . Mechanisms of the influence of midazolam on morphine antinociception at spinal and supraspinal levels in rats.  Eur J Pharmacol. 1994;  271 421-431
  • 71 Luger T J, Hill H F. et al .Spinal potentiating and supraspinal inhibitory effect of midazolam on morphine analgesia in rats. 7th World Congress on Pain. Paris; IASP Publication 1993
  • 72 Luger T J, Hill H F. et al . Can midazolam diminish sufentanil analgesia in patients with major trauma? A retrospective study with 43 patients.  Drug Metab Drug Interact. 1992;  10 177-184
  • 73 Magnan J, Paterson S J. et al . The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties.  Naunyn-Schmiedebergs Arch Pharmacol. 1982;  319 197-205
  • 74 Malmberg A B, Yaksh T L. The effect of morphine on formalin-evoked behaviour and spinal release of excitatory amino acids and prostaglandin E2 using microdialysis in conscious rats.  Br J Pharmacol. 1995;  114 1969-1975
  • 75 Manning B H, Mao J. et al . Continuous coadministration of dextromethorphan or MK-801 with morphine: attenuation of morphine dependence and naloxone-reversible attenuation of morphine tolerance.  Pain. 1996;  67 79-88
  • 76 Mao J, Price D D. et al . Mechanisms of hyperalgesia and morphine tolerance: a current view of their possible interaction.  Pain. 1995;  62 259-274
  • 77 Mao J, Price D D. et al . Mechanisms of hyperalgesia and morphine tolerance: a current view of their possible interactions.  Pain. 1995;  62 259-274
  • 78 Mao J, Price J J. et al . Oral administration of dextrometorphan prevents the the development of morphine tolerance and dependence in rats.  Pain. 1996;  57 361-368
  • 79 Martin W R, Eades G G. et al . The effects of morphine and nalorphine-like drugs in the non-dependant and morphine-dependant chronic spinal dog.  J Pharmacol Exp Ther. 1976;  197 517-532
  • 80 Mauritz W. Stellungnahme und Empfehlungen zur Langzeit-Analgosedierung von Intensivpatienten mit Sufentanil. Wien; Janssen Pharmaceutica 1993
  • 81 Mayer D J, Mao J. et al . The development of morphine tolerance and dependence is associated with translocation of protein kinase C.  Pain. 1995;  61 365-374
  • 82 Maze M, Tranquilli W. Alpha-2 adrenoreceptor agonists: Defining the role in clinical anesthesisa.  Anesthesiology. 1991;  74 581-605
  • 83 McCarthy R J, Kroin J S. et al . Antinociceptive potentiation and attenuation of tolerance by intrathecal co-infusion of magnesium sulfate and morphine in rats.  Anesth Analg. 1998;  86 830-836
  • 84 McCleane G J. The cholecystokinin antagonist proglumide enhances the analgesic efficacy of morphine in humans with chronic benign pain.  Anesth Analg. 1998;  87 1117-1120
  • 85 Meller S T, Pechman P S. et al . Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat.  Neuroscience. 1992;  50 7-10
  • 86 Morley J S, Watt J WG. et al . Methadone in pain uncontrolled by morphine.  Lancet. 1993;  342 1243
  • 87 Motsch J, Gräber E. et al . Addition of clonidine enhances postoperative analgesia from epidural morphine; a double blind study.  Anesthesiology. 1990;  73 1067-1073
  • 88 Neer E J. Heterotrimeric G-proteins - organizers of transmembrane signals.  Cell. 1995;  80 249-257
  • 89 Nicolson J R, Paterson S J. et al . Pharmacological studies on the „orphan” opioid receptor in central and peripheral sites.  Can J Physiol Pharmacol. 1998;  76 304-313
  • 90 Niemegeers C JE, Schellenkens K HL. et al . Sufentanil, a very potent and extremely safe intravenous morphine-like compound in mice, rats and dogs.  Arzneim Forsch/Drug Res. 1976;  216 1551-1556
  • 91 Nishiyama T, Hanaoka K. Antinociceptive effects of intrathecal NMDA and AMPA antagonists on the formation test in rats and their interaction with morphine.  Br J Anaesth. 1999;  82 201
  • 92 Nishiyama T, Yaksh T L. et al . Effects of Intrathecal NMDA and non-NMDA antagonists on acute thermal nociception and their interaction with morphine.  Anesthesiology. 1998;  98 715-722
  • 93 Ossipov M H, Suarez L J. et al . Antinociceptive interactions between alpha2-adrenergic and opiate agonists at the spinal level of rodents.  Anesth Analg. 1989;  68 194-200
  • 94 Ostermann M E, Keenan S P. et al . Sedation in the intensive care unit: a systemic review.  JAMA. 2000;  283 1451-1459
  • 95 Palaoglu O, Ayhan I H. The possible role of benzodiazepine receptors in morphine analgesia.  Pharmacol Biochem Behav. 1986;  25 215-217
  • 96 Pan Y X, Xu J. et al . Indentification and characterization of three new alternatively spliced µ-opioid receptor isoforms.  Mol Pharm. 1999;  56 396-403
  • 97 Pan Y X, Xu J. et al . Identification and characterization of three new alternative spliced mu-opioid receptors.  Mol Pharmacol. 1999;  56 396-403
  • 98 Paronis C A, Holtzman S G. Development of tolerance to the analgesic activity of mu agonists after continuous infusion of morphine, meperidine or fentanyl in rats.  J Pharmacol Exp Ther. 1992;  262 1-9
  • 99 Patrini G, Massi P. et al . Changes in opioid receptor density on murine splenocytes induced by in vivo treatment with morphine and methadone.  J Pharm Exp Ther. 1996;  279 172-176
  • 100 Perry D C, Rosenbaum J S. et al . 3H-Etorphine receptor binding in vivo: Small fractional occupancy elicits analgesia.  J Pharmac Exp Ther. 1982;  21 272-279
  • 101 Pert P B, Snyder S H. Opiate receptor: Demonstration in nervous tissue.  Science. 1973;  179 1011-1014
  • 102 Przewlocki R, Machelska H. et al . Inhibition of nitric oxide synthase enhances morphine antinociception in the rat spinal cord.  Life Sci. 1993;  53 1-5
  • 103 Rapp S E, Ready L B. et al . Acute pain management in patients with prior opioid consumption: a case-controlled retrospective review.  Pain. 1995;  61 195-201
  • 104 Rattan A K, McDonald J S. et al . Differential effects of intrathecal midazolam on morphine-induced antinociception in the rat: role of spinal opioid receptors.  Anesth Analg. 1991;  73 124-131
  • 105 Reuben S S, Bhotpatkar M. et al . Praemptive analgesic effect of refecoxib after ambulatory arthroscopic knee surgery.  Anesth Analg. 2002;  94 55-59
  • 106 Ronnekleiv O, Bosch M. et al . Downregulation of mu-opioid receptor mRNA in the mediobasal hypothalamus of the female guinea pig following morphine treatment.  Neurosci Let. 1996;  261 129-132
  • 107 Rosenbaum J S, Holford N HG. et al . Opiate receptor binding-effect relationship: Sufentanil and etorphine produce analgesia at the µ-site with low fractional receptor occupancy.  Brain Res. 1984;  291 317-324
  • 108 Saito Y, Kaneko M. et al . Characteristics of tolerance to somatic and visceral antinociception after continuous epidural infusion of morphine in rats.  Anesth Analg. 1998;  87 1340-1345
  • 109 Saito Y, Kaneko M. et al . Interaction of intrathecally infused morphine and lidocaine in rats (Part II): Effects on the development of tolerance to morphine.  Anesthesiology. 1998;  89 1464-1470
  • 110 Schraag S, Checketts M. et al . Lack of rapid development of opioid tolerance during alfentanil and remifentanil infusions for postoperative pain.  Anesth Analg. 1999;  89 753-757
  • 111 Schug S A, Zech D. et al . A long-term survey of morphine in cancer pain patients.  J Pain Symp Manag. 1992;  7 259-266
  • 112 Schwieger I A, Hall R I. et al . Less than additive antinociceptive interaction between midazolam and fentanyl in enflurane-anesthetized dogs.  Anesthesiology. 1991;  74 1060-1066
  • 113 Shapira M, Baumhaker Y. et al . Long-term regulation of opioid receptors in neuroblastoma and lymphoma cell lines.  J Neuroimmun. 1997;  76 145-152
  • 114 Shimoyama N, Shimoyama M. et al . Ketamine attenuates and reverses morphine tolerance in rodents.  Anesthesiology. 1996;  85 1357-1366
  • 115 Smith M T, Watt J A. et al . Morphine-3-glucoronide - a potent antagonist of morphine analgesia.  Life Sci. 1990;  47 579-585
  • 116 Sosnowski M, Yaksh T L. Differential cross-tolerance between intrathecal morphine and sufentanil in the rat.  Anesthesiology. 1990;  73 1141-1147
  • 117 Srivastava R K, Gombar K K. et al . Attenuation of morphine-induced antinociception by L-glutamic acid at the spinal site in rats.  Can J Anaesth. 1995;  42 541-546
  • 118 Stanfa L, Dickenson A. et al . Cholecystokinin and morphine analgesia: variations on a theme.  Trends Pharmacol Sci. 1994;  15 65-66
  • 119 Stevens G W, Yaksh T L. Potency of infused spinal antinociceptive agents is inversely related to magnitude of tolerance after continuous infusion.  J Pharmacol Exp Ther. 1989;  250 1-8
  • 120 Stevens G W, TL Y aksh. Time course characteristics of tolerance to continuously infused antinociceptive agents in rat spinal cord.  J Pharmacol Exp Ther. 1989;  251 216-223
  • 121 Striebel H W, Koenigs D. et al . Clonidin - Stellenwert in der Anästhesie.  Anaesthesist. 1993;  42 131-141
  • 122 Suzuki M, Tsueda K. et al . Small-dose ketamine enhances morphine-induced analgesia after outpatient surgery.  Anesth Analg. 1999;  89 98-103
  • 123 Takemori A E, Loh H H. et al . Suppression by dynorphin A-(1-13) of the expression of opiate withdrawal and tolerance in mice.  Eur J Pharmacol. 1992;  221 223-226
  • 124 Tao P L, Hwang C L. et al . U-50,488 blocks the development of morphine tolerance and dependence at a very low dose in guinea pigs.  Eur J Pharmacol. 1994;  256 281-286
  • 125 Taub A. Opioid analgesics in the treatment of chronic intractable pain of non-neoplastic origin. In: Kitahata LM, Collins JG Narcotic Analgesics in Anesthesiology. Baltimore; Williams and Wilkins 1982: 199-208
  • 126 Tejwani G A, Rattan A K. et al . Inhibition of morphine-induced tolerance and dependence by a benzodiazepine receptor agonist midazolam in the rat.  Anesth Analg. 1993;  76 1052-1060
  • 127 Thompson R C, Mansour A. et al . Cloning and pharmacological characterization of a rat µ-opioid receptor.  Neuron. 1993;  23 903-913
  • 128 Thorat S N, Veeranna N. et al . Biochemical and behaviour studies on the interaction between mu- and kappa-opiate agonists in mice.  Brain Res. 1993;  651 191-198
  • 129 Tiseo P, Inturrisi C. Attenuation and reversal of morphine tolerance by the competitive N-methyl-D-aspartate receptor antagonist, LY274614.  J Pharmacol Expt Therap. 1993;  264 1090-1096
  • 130 Tiseo P J, Cheng J. et al . Modulation of morphine tolerance by the competitive N-methyl-D-aspartate receptor antagonist LY274614: assessment of opioid receptor changes.  J Pharmacol Exp Ther. 1994;  268 195-201
  • 131 Trapaidze N, Devi L A. The role of C-tail in opioid receptor down-regulation.  Br J Anaesth. 1998;  81 95
  • 132 Trapaidze N, Keith D. et al . Sequestration of the delta opioid receptor: Role of the C terminus in agonist-mediated internalization.  J Biol Chem. 1996;  271 29 279-29 285
  • 133 Twycross R G. Clinical experience with diamorphine in advanced malignant disease.  J Clin Pharmacol. 1974;  9 184-198
  • 134 Vinik H R, Kissin I. Rapid development of tolerance to analgesia during remifentanil infusion in humans.  Anesth Analg. 1998;  86 1307-1311
  • 135 Westmoreland C. Opioid agonist-antagonists.  Curr Op Anesth. 1991;  4 556-562
  • 136 Whistler J L. et al . Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction.  Neuron. 1999;  23 737-746
  • 137 Williams P I, Sarginson R E. et al . Use of methadone in the morphine-tolerant burned paediatric patient. Case Report.  Br J Anaesth. 1998;  80 92-95
  • 138 Xie G, Meng F. et al . Primary stucture and functional expression of a guinea pig kappa opioid (dynorphin) receptor.  Proc Natl Acad Sci (USA). 1994;  91 3779-3783
  • 139 Yamaguchi H, Naito H. Antinociceptive synergistic interaction between morphine and n-nitro l-arginine methyl ester on thermal nociceptive tests in the rats.  Can J Anaesth. 1996;  43 975-981
  • 140 Yamamoto T, Ohno M. et al . A selective k-opioid agonist, U-50,488H, blocks the development of tolerance to morphine analgesia in rats.  Eur J Pharmacol. 1988;  156 173-176
  • 141 Yamamoto T, Yaksh T L. Comparison of the antinociceptive effects of pre- and posttreatment with intrathecal morphine and MK801, an NMDA antagonist, on the formalin test in the rat.  Anesthesiology. 1992;  77 757-763
  • 142 Yang C Y, Wong C S. et al . Intrathecal ketamine reduces morphine requirements in patients with terminal cancer pain.  Can J Anaesth. 1996;  43 379-383
  • 143 Yasuda K, Rayno R K. et al . Cloning and functional comparison of kappa-opioid and delta-opioid receptors from mouse-brain.  Proc Nat Acad Sci USA. 1993;  90 6736-6740
  • 144 Yu V C, Sadée W. Efficacy and tolerance of narcotic analgesics at the mu opioid receptor in differentiated human neuroblastoma cells.  J Pharmacol Exp Ther. 1988;  245 350-355

Prof. Dr. med. Enno Freye

Deichstr. 3a

41468 Neuss-Uedesheim

eMail: Enno.Freye@uni-duesseldorf.de