Synlett 2003(1): 0029-0034
DOI: 10.1055/s-2003-36233
LETTER
© Georg Thieme Verlag Stuttgart · New York

An Alkyne Metathesis-Based Route to ortho-Dehydrobenzannulenes

Ognjen Š. Miljanić *, K. Peter C. Vollhardt, Glenn D. Whitener*
Center for New Directions in Organic Synthesis, Department of Chemistry, University of California at Berkeley and the Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-1460, USA
Fax: +1(510)6435208; e-Mail: kpcv@uclink.berkeley.edu;
Further Information

Publication History

Received 11 November 2002
Publication Date:
18 December 2002 (online)

Abstract

An application of alkyne metathesis to 1,2-di(prop-1-ynyl)arenes, producing dehydrobenzannulenes, is described. An efficient method for selective Sonogashira couplings of bromoiodoarenes under conditions of microwave irradiation is also reported.

    References

  • 1 Mortreux A. Blanchard M. J. Chem. Soc, Chem. Commun.  1974,  786 
  • For recent references, see:
  • 2a Brizius G. Bunz UHF. Org. Lett.  2002,  4:  2829 
  • 2b Brizius G. Kroth S. Bunz UHF. Macromolecules  2002,  35:  5317 
  • 2c For reviews, see: Bunz UHF. Acc. Chem. Res.  2001,  34:  998 
  • 2d See also: Bunz UHF. Kloppenburg L. Angew. Chem. Int. Ed.  1999,  38:  478 
  • 2e For a pertinent example, see: Ge P.-H. Fu W. Herrmann WA. Herdtweck E. Campana C. Adams RA. Bunz UHF. Angew. Chem. Int. Ed.  2000,  39:  3607 
  • For selected references, see:
  • 3a Fürstner A. Mathes C. Grela K. Chem. Commun.  2002,  1057 
  • 3b Fürstner A. Stelzer F. Rumbo A. Krause H. Chem.-Eur. J.  2002,  8:  1856 
  • 3c Fürstner A. Mathes C. Lehmann CW. Chem.-Eur. J.  2001,  7:  5299 
  • 3d Fürstner A. Grela K. Mathes C. Lehmann CW. J. Am. Chem. Soc.  2000,  122:  11799 
  • 3e Fürstner A. Guth O. Rumbo A. Seidel G. J. Am. Chem. Soc.  1999,  121:  11108 
  • 3f Fürstner A. Mathes C. Lehmann CW. J. Am. Chem. Soc.  1999,  121:  9453 
  • 3g Fürstner A. Seidel G. Angew. Chem. Int. Ed.  1998,  37:  1734 
  • For reviews, see:
  • 4a Haley MM. Synlett  1998,  557 
  • 4b Haley MM. Pak JJ. Brand SC. Top. Curr. Chem.  1999,  202:  81 
  • 4c Haley MM. Wan WB. In Advances in Strained and Interesting Organic Molecules   Vol. 8:  Halton B. JAI Press; New York: 2000.  p.1 
  • 4d Kennedy RD. Lloyd D. McNab H. J. Chem. Soc., Perkin Trans. 1  2002,  1601 
  • 4e Balaban AT. Banciu M. Ciorba V. Annulenes, Benzo-, Hetero-, Homo-Derivatives and Their Valence Isomers   Vol. 2:  CRC Press; Boca Raton: 1987.  p.146 
  • 5 Youngs WJ. Tessier CA. Bradshaw JD. Chem. Rev.  1999,  99:  3153 
  • For a review, see:
  • 6a Bunz UHF. Rubin Y. Tobe Y. Chem. Soc. Rev.  1999,  28:  107 
  • 6b See also, inter alia: Narita N. Nagai S. Suzuki S. Phys. Rev. B: Condensed Matter Mater. Phys.  2002,  64:  245408 
  • 6c Kehoe JM. Kiley JH. English JJ. Johnson CA. Petersen RC. Haley MM. Org. Lett.  2000,  2:  969 
  • 6d Grima JN. Evans KE. Chem. Commun.  2000,  1531 
  • 7a Boese R. Matzger AJ. Vollhardt KPC. J. Am. Chem. Soc.  1997,  119:  2052 
  • 7b Dosa PI. Erben C. Iyer VS. Vollhardt KPC. Wasser IM. J. Am. Chem. Soc.  1999,  121:  10430 
  • For selected recent references, see:
  • 8a Pak JJ. Weakley TJR. Haley MM. Lau DYK. Stoddart JF. Synthesis  2002,  1256 
  • 8b Tobe Y. Utsumi N. Kawabata K. Nagano A. Adachi K. Araki S. Sonoda M. Hirose K. Naemura K. J. Am. Chem. Soc.  2002,  124:  5350 
  • 8c Hosokawa Y. Kawase T. Oda M. Chem. Commun.  2001,  1948 
  • 8d Nakamura K. Okubo H. Yamaguchi M. Org. Lett.  2001,  3:  1097 
  • 8e Höger S. Enkelmann V. Bonrad K. Tschierske C. Angew. Chem. Int. Ed.  2000,  39:  2268 
  • 8f See also: Moore JS. Acc. Chem. Res.  1997,  30:  402 
  • 8g Zhang J. Pesak DJ. Ludwick JL. Moore JS. J. Am. Chem. Soc.  1994,  116:  4227 
  • 8h Pickholz M. Stafström S. Chem. Phys.  2001,  270:  245 
  • See, inter alia:
  • 9a Sarkar A. Pak JJ. Rayfield GW. Haley MM. J. Mater. Chem.  2001,  11:  2943 
  • 9b Wan WB. Haley MM. J. Org. Chem.  2001,  66:  3893 
  • 10 Eickmeier C. Junga H. Matzger AJ. Scherhag F. Shim M. Vollhardt KPC. Angew. Chem., Int. Ed. Engl.  1997,  36:  2103 
  • Most of the starting iodoarenes are either commercially available (5a, 5h, 5k) or have been described previously:
  • 11a 5b, 5d: Kryska A. Skulski L. J. Chem. Res., Synop.  1999,  590 
  • 11b 5c: Lacour J. Monchaud D. Bernardinelli G. Favarger F. Org. Lett.  2001,  3:  1407 
  • 11c 5g: Nakayama J. Sakai A. Hoshino M. J. Org. Chem.  1984,  49:  5084 
  • 11d 5i: Mattern DL. J. Org. Chem.  1983,  48:  4772 
  • 11e 5j: Goldfinger MB. Crawford KB. Swager TM. J. Am. Chem. Soc.  1997,  119:  4578 
  • 11f

    1,2-Dibromo-4,5-diiodobenzene (5e) was prepared using the general procedure described for 5j. Compound 5e: White needles (33%), mp 173-175 °C. 1H NMR (400 MHz, CDCl3): δ = 8.03 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 142.5, 125.4, 106.9. MS (EI, 70 eV): m/z (%) = 488 (100) [M+], 361 (32), 234 (17), 153 (8), 74 (20). IR (CS2): 2925, 1408, 1282, 1005, 877 cm-1. HRMS: Calcd for C6H2Br2I2: 487.6592. Found: 487.6596. Anal. Calcd for C6H2Br2I2:
    C, 14.78; H, 0.41. Found: C, 14.55; H, 0.43.
    1,4-Dibromo-2,3-diiodobenzene ( 5f): The first two steps followed the general procedure in ref. [11g] . Chloral hydrate (9.93 g, 60.0 mmol), 2,5-dibromoaniline (12.6 g, 50.0 mmol), hydroxylamine hydrochloride (5.21 g, 75.0 mmol), and Na2SO4 (60.0 g) were suspended in a mixture of H2O (300 mL) and EtOH (300 mL). The mixture was stirred and kept at reflux for 12 h. It was then concentrated by evaporation of the ethanol and poured onto crushed ice, which caused precipitation of a white solid. After 5 h at 0 °C, the suspension was filtered, and the crystals were air dried to yield 13.5 g (84%) of crude 2,5-dibromoisonitroso-acetanilide. This amount was then cyclized by heating at 100 °C in 86% H2SO4 for 15 min. The resulting dark red suspension was poured onto crushed ice to yield 5.98 g (47%) of 3,6-dibromoisatine as bright orange crystals, which were subsequently subjected to basic hydrolysis in aq H2O2to yield 2.72 g (47%) of off-white crystals of 3,6-dibromoanthranilic acid. [11h] Finally, 3,6-dibromoanthranilic acid was converted to 1,4-dibromo-2,3-diiodobenzene by employing the aprotic diazotization procedure in ref. [11i] After column chromatography(hexanes) the product was obtained as white crystals, 2.61 g (58%), mp 97-99 °C. 1H NMR (400 MHz, CDCl3): δ = 7.49 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 132.8, 127.8, 117.4. MS (EI, 70 eV): m/z (%) = 488 (100) [M+], 361 (29), 234 (21), 153 (18), 74 (24). IR (CHCl3): 2920, 1396, 1150, 1002, 810 cm-1. HRMS: Calcd for C6H2Br2I2: 487.6592. Found: 487.6596. Anal. Calcd for C6H2Br2I2: C, 14.78; H, 0.41. Found: C, 14.74; H, 0.04.

  • 11g Garden SJ. Torres JC. Ferreira AA. Silva RB. Pinto AC. Tetrahedron Lett.  1997,  38:  1501 
  • 11h Lisowski V. Robba M. Rault S. J. Org. Chem.  2000,  65:  4193 
  • 11i Nakayama J. Sakai A. Hoshino M. J. Org. Chem.  1984,  49:  5084 
  • 13a Sonogashira K. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; New York: 1998.  p.Chap. 5 
  • 13b Sonogashira K. In Comprehensive Organic Synthesis   Vol. 3:  Trost BM. Pergamon; New York: 1991.  p.Chap. 2.4 
  • 14 A somewhat related application of microwaves in Sonogashira reactions is described in: Erdelyi M. Gogoll A. J. Org. Chem.  2001,  66:  4165 
  • 15 Lidström P. Tierney J. Wathey B. Westman J. Tetrahedron  2001,  57:  9225 
  • 17a Iyoda M. Vorasingha A. Kuwatani Y. Yoshida M. Tetrahedron Lett.  1998,  39:  4701 
  • 17b Huynh C. Linstrumelle G. Tetrahedron  1988,  44:  6337 
  • 18 Collman JP. Hegedus LS. Norton JR. Finke RG. Principles and Applications of Organotransition Metal Chemistry   University Science Books; Mill Valley: 1987.  p.Chap. 9 
  • 20 The spectral data are in good agreement with those in: Staab HA. Graf F. Chem. Ber.  1970,  103:  1107 
  • 22 Srinivasan M. Sankararaman S. Dix I. Jones PG. Org. Lett.  2000,  2:  3849 
  • 23a Alkorta I. Rozas I. Elguero J. Tetrahedron  2001,  57:  6043 
  • 23b Jusélius J. Sundholm D. Phys. Chem.  2001,  3:  2433 
  • 23c Godard C. Lepetit C. Chauvin R. Chem. Commun.  2000,  1833 
  • 23d Wan WB. Kimball DB. Haley MM. Tetrahedron Lett.  1998,  39:  6795 
  • 23e Matzger AJ. Vollhardt KPC. Tetrahedron Lett.  1998,  39:  6791 
12

General Procedure for Propynylations: To a 150 mL Schlenk flask, equipped with a Teflon-coated magnetic stirring bar, were added the diiodoarene (1.67 mmol), PdCl2(PPh3)2 (177 mg, 0.25 mmol), CuI (32 mg, 0.17 mmol), and Et3N (7.50 mL). The flask was then evacuated and filled with propyne gas up to 1.5 atm (approx. 10 mmol, 3 equiv) of pressure. Depending on the system, the reaction mixture was stirred for 22-96 h, at either room or elevated temperatures (Table [1] ). The reaction mixture was then diluted with ether, washed with two portions of aq NH4Cl, and dried over MgSO4. Solvent was removed in vacuo and the resulting crude product purified by Kugelrohr distillation, sublimation, or chromatography.

16

General Procedure for Microwave-Assisted Propynylations: A heavy-walled Smith process vial was charged with a magnetic stirring bar, Et3N (0.9 mL), DMF (0.1 mL), PdCl2(PPh3)2 (19.6 mg, 0.028 mmol), CuI (5.4 mg, 0.028 mmol), and the dibromodiiodobenzene (0.113 mmol). The vial was sealed, evacuated, and filled with propyne through a Teflon septum up to 2.5 atm pressure. It was then irradiated in a Smith Synthesizer single-mode microwave cavity, producing continuous radiation at 2450 MHz. The resulting solution was immediately filtered through a short plug of silica gel (hexanes/ethyl acetate) to remove the catalyst and the crude product further purified by column chromatography on silica gel (hexanes).

19

General Procedure for (Me3CO)3WCCMe3-Mediated Alkyne Metathesis: A 25 mL Schlenk flask was charged, under the atmosphere of nitrogen, with the respective propynylated arene (0.20-0.35 mmol), (Me3CO)3WCCMe3 (20-40 mol%), and toluene (20 mL). The solution was stirred at 80 °C for 8-96 h (Table [2] ). After the reaction was complete, solvent was removed in vacuo, and the residue was subjected to flash chromatography on silica, eluting with hexane/ethyl acetate. Compound 1e: Brown crystals, showing green fluorescence, mp 292-300 °C(dec). 1H NMR (400 MHz, CDCl3): δ = 7.56 (s). MS (EI, 70 eV): m/z (%) = 774 (100)[M+], 695 (29), 614 (19). IR (CHCl3): 2933, 2255, 1464, 1274, 1154 cm-1. The compound decomposed upon standing for one week. Compound 2: Pale yellow crystals, showing green fluorescence, mp 310-315 °C(dec). 1H NMR (400 MHz, CDCl3): δ = 8.05 (br t, 2 H, J = 1.5 Hz), 7.59 (dd, 4 H, J 1 = 3.3 Hz, J 2 = 5.7 Hz), 7.54 (dd, 4 H, J 1 = 1.6 Hz, J 2 = 7.9 Hz), 7.38 (t, 2 H, J = 8.0 Hz), 7.32 (dd, 4 H, J 1 = 3.4 Hz, J 2 = 5.8 Hz). MS (EI, 70 eV): m/z (%) = 401(31) [M + H]+, 400(100) [M+], 199(11). HRMS: Calcd for C32H16: 400.1252. Found: 400.1248. UV/Vis (CH2Cl2): λmax (lg ) = 265 (4.03), 272 (4.05), 278 (4.11), 280 (4.10), 317 (3.62), 341 (3.26) nm. IR (CHCl3): 2920, 2219, 1468, 1212,
892 cm-1. Selected spectral data for 3: 1H NMR (400 MHz, CDCl3): δ = 7.44 (AA′ m, 8 H), 7.34 (s, 2 H), 7.19 (BB′ m, 8 H). MS (EI, 70 eV): m/z (%) = 524 (10) [M + 2H]+, 523 (42) [M + H]+, 522 (100) [M+], 261 (25) [M2+]. HRMS: Calcd for C42H18: 522.1408. Found: 522.1428.

21

The spectral data are in good agreement with those in ref. [17a]

24

Details of the crystal structure determination (deposition number CCDC 192630) may be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk].