Semin Reprod Med 2002; 20(3): 189-198
DOI: 10.1055/s-2002-35383
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Disorders of Gonadal Development

Phoebe Dewing1 , Pascal Bernard1 , Eric Vilain1,2
  • 1Department of Human Genetics, UCLA School of Medicine, Los Angeles, California
  • 2Department of Pediatrics, UCLA School of Medicine, Los Angeles, California
Further Information

Publication History

Publication Date:
12 November 2002 (online)

ABSTRACT

The molecular mechanisms of gonadal development are a complex process, which involves the tightly regulated differentiation of a bipotential embryonic gonad into either testes or ovary. Once this has occurred, the phenotypic and gonadal sex of an individual has been genetically determined. This process, however, may not always be so straightforward. By studying individuals who are sex reversed or who have ambiguous genitalia, the discovery of the handful of sex-determining genes that we know of today was made possible. It was not until recently that the transcription factors SRY, DAX1, SOX9, SF-1, and WT1 were recognized to be involved in gonadal development. Dissecting the molecular pathway of mammalian sex determination will be crucial in understanding the development of the gonads and the pathophysiology of human disorders of sex determination.

REFERENCES

  • 1 Jost A. Recherches sur la différentiation sexuelle de l'embryon de lapin: III. Rôle des gonades foetales dans la différentiation sexuelle somatique.  Arch Anat Microsc Morphol Exp . 1947;  271-315
  • 2 Sinclair A H, Berta P, Palmer M S. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif.  Nature . 1990;  346 240-244
  • 3 Berta P, Hawkins J R, Sinclair A H. Genetic evidence equating SRY and the testis-determining factor.  Nature . 1990;  348 448-450
  • 4 Koopman P, Münsterberg A, Capel B, Vivian N, Lovell-Badge R. Expression of a candidate sex-determining gene during mouse testis differentiation.  Nature . 1990;  348 450-452
  • 5 Harley V R, Lovell-Badge R, Goodfellow P N. Definition of a consensus DNA binding site for SRY.  Nucleic Acids Res . 1994;  8 1500-1501
  • 6 Nasrin N, Buggs C, Kong X F. DNA-binding properties of the product of the testis-determining gene and a related protein.  Nature . 1991;  354 317-320
  • 7 Clépet C, Schafer A J, Sinclair A H. The human SRY transcript.  Hum Mol Genet . 1993;  12 2007-2012
  • 8 Eicher E M, Shown E P, Washburn L L. Sex reversal in C57BL/6J-YPOS mice corrected by a Sry transgene.  Philos Trans R Soc Lond B Biol Sci . 1995;  1333 263-269
  • 9 Gubbay J, Collignon J, Koopman P. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes.  Nature . 1990;  346 245-250
  • 10 Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry Nature .  1991;  351 117-121
  • 11 Hawkins J R, Taylor A, Berta P. Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal.  Hum Genet . 1992;  4 471-474
  • 12 Lovell-Badge R, Robertson E. XY female mice resulting from a heritable mutation in the primary testis-determining gene, Tdy Development .  1990;  3 635-646
  • 13 Page D C, Fisher E M, McGillivray B, Brown L G. Additional deletion in sex-determining region of human Y chromosome resolves paradox of X,t(Y;22) female.  Nature . 1990;  346 279-281
  • 14 Cameron F J, Sinclair A H. Mutations in SRY and SOX9: testis-determining genes.  Hum Mutat . 1997;  5 388-395
  • 15 Domenice S, Yumie Nishi M, Correia Billerbeck E A. A novel missense mutation (S18N) in the 5' non-HMG box region of the SRY gene in a patient with partial gonadal dysgenesis and his normal male relatives.  Hum Genet . 1998;  2 213-215
  • 16 McElreavey K, Vilain E, Barbaux S. Loss of sequences 3′ to the testis-determining gene, SRY, including the Y pseudoautosomal boundary associated with partial testicular determination.  Proc Natl Acad Sci U S A . 1996;  16 8590-8594
  • 17 McElreavey K, Fellous M. Sex determination and the Y chromosome.  Am J Med Genet . 1999;  4 176-185
  • 18 Veitia R, Ion A, Barbaux S. Mutations and sequence variants in the testis-determining region of the Y chromosome in individuals with a 46,XY female phenotype.  Hum Genet . 1997;  5 648-652
  • 19 McElreavey K, Barbaux S, Ion A, Fellous M. The genetic basis of murine and human sex determination: a review.  Heredity . 1995;  4 599-611
  • 20 Queipo G, Zenteno J C, Peña R. Molecular analysis in true hermaphroditism: demonstration of low level hidden mosaicism for Y-derived sequences in 46,XX cases (in press).  Hum Genet . 2002; 
  • 21 Krob G, Braun A, Kuhnle U. True hermaphroditism: geographical distribution, clinical findings, chromosomes and gonadal histology.  Eur J Pediatr . 1994;  1 2-10
  • 22 Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R. Dax1 antagonizes Sry action in mammalian sex determination.  Nature . 1998;  391 761-777
  • 23 Yu R N, Ito M, Saunders T L, Camper S A, Jameson J L. Role of Ahch in gonadal development and gametogenesis.  Nat Genet . 1998;  4 353-357
  • 24 Lalli E, Ohe K, Hindelang C, Sassone-Corsi P. Orphan receptor DAX-1 is a shuttling RNA binding protein associated with polyribosomes via mRNA.  Mol Cell Biol . 2000;  13 4910-4921
  • 25 Zazopoulos E, Lalli E, Stocco D M, Sassone-Corsi P. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis.  Nature . 1997;  390 311-315
  • 26 Houston C S, Opitz J M, Spranger J W. The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17-year-old boy first reported by Maroteaux et al in 1971.  Am J Med Genet . 1983;  1 3-28
  • 27 Kwok C, Weller P A, Guioli S. Mutations in SOX9, the gene responsible for campomelic dysplasia and autosomal sex reversal.  Am J Hum Genet . 1995;  5 1028-1036
  • 28 Tommerup N, Schempp W, Meinecke P. Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CMPD1) to 17q24.3-q25.1  Nat Genet . 1993;  2 170-174
  • 29 Foster J W, Dominguez-Steglich M A, Guioli S. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene.  Nature . 1994;  372 525-530
  • 30 Wagner T, Wirth J, Meyer J. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9 Cell .  1994;  6 1111-1120
  • 31 Marshall O J, Harley V R. Molecular mechanisms of SOX9 action.  Mol Genet Metab . 2000;  3 455-462
  • 32 Hovmöller M L, Osuna A, Eklöf O. Campomelic dwarfism: a genetically determined mesenchymal disorder combined with sex reversal.  Hereditas . 1977;  1 51-62
  • 33 Bardoni B, Zanaria E, Guioli S. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal.  Nat Genet . 1994;  4 497-501
  • 34 Bell D M, Leung K K, Wheatley S C. SOX9 directly regulates the type-II collagen gene.  Nat Genet . 1997;  2 174-178
  • 35 Huang B, Wang S, Ning Y, Lamb A N, Bartley J. Autosomal XX sex reversal caused by duplication of SOX9 Am J Med Genet .  1999;  4 349-353
  • 36 de la Chapelle A, Hästbacka J, Korhonen T, Mäenpää J. The etiology of XX sex reversal.  Reprod Nutr Dev . 1990;  3 39S-49S
  • 37 Fechner P Y, Marcantonio S M, Jaswaney V. The role of the sex-determining region Y gene in the etiology of 46,XX maleness.  J Clin Endocrinol Metab . 1993;  3 690-695
  • 38 Bishop C R, Whitworth D J, Qin Y. A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse.  Nat Genet . 2000;  4 490-494
  • 39 Vidal V P, Chaboissier M C, de Rooij G D, Schedl A. Sox9 induces testis development in XX transgenic mice.  Nat Genet . 2001;  3 216-217
  • 40 Lala D S, Rice D A, Parker K L. Steroidogenic factor 1, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor 1.  Mol Endocrinol . 1992;  8 1249-1258
  • 41 Lynch J P, Lala D S, Peluso J J. Steroidogenic factor 1, an orphan nuclear receptor, regulates the expression of the rat aromatase gene in gonadal tissues.  Mol Endocrinol . 1993;  6 776-786
  • 42 Morohashi K, Zanger U M, Honda S. Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP.  Mol Endocrinol . 1993;  9 1196-1204
  • 43 Morohashi K, Honda S, Inomata Y, Handa H, Omura T. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s.  J Biol Chem . 1992;  25 17913-17919
  • 44 Parker K L, Schimmer B P, Schedl A. Genes essential for early events in gonadal development.  EXS . 2001;  91 11-24
  • 45 Vilain E, Guo W, Zhang Y H, McCabe E R. DAX1 gene expression upregulated by steroidogenic factor 1 in an adrenocortical carcinoma cell line.  Biochem Mol Med . 1997;  1 1-8
  • 46 Sadovsky Y, Crawford P A, Woodson K G. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids.  Proc Natl Acad Sci U S A . 1995;  24 10939-10943
  • 47 Luo X, Ikeda Y, Parker K L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation.  Cell . 1994;  4 481-490
  • 48 Biason-Lauber A, Schoenle E J. Apparently normal ovarian differentiation in a prepubertal girl with transcriptionally inactive steroidogenic factor 1 (NR5α1/SF-1) and adrenocortical insufficiency.  Am J Hum Genet . 2000;  6 1563-1568
  • 49 Achermann J C, Ito M, Hindmarsh P C, Jameson J L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans.  Nat Genet . 1999;  2 125-126
  • 50 Hammes A, Guo J K, Lutsch G. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation.  Cell . 2001;  3 319-329
  • 51 Call K M, Glaser T, Ito C Y. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus.  Cell . 1990;  3 509-520
  • 52 Bonetta L, Kuehn S E, Huang A. Wilms tumor locus on 11p13 defined by multiple CpG island-associated transcripts.  Science . 1990;  250 994-997
  • 53 Gessler M, Poustka A, Cavenee W. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping.  Nature . 1990;  6260 774-778
  • 54 Pelletier J, Bruening W, Li F P. WT1 mutations contribute to abnormal genital system development and hereditary Wilms' tumour.  Nature . 1991;  343 431-434
  • 55 Breslow N E, Beckwith J B. Epidemiological features of Wilms' tumor: results of the National Wilms' Tumor Study.  J Natl Cancer Inst . 1982;  3 429-436
  • 56 Parker K L, Schedl A, Schimmer B P. Gene interactions in gonadal development.  Annu Rev Physiol . 1999;  3 417-433
  • 57 de Santa Barbara P, Moniot B, Poulat F, Berta P. Expression and subcellular localization of SF-1, SOX9, WTI, and AMH proteins during early human testicular development.  Dev Dyn . 2000;  3 293-298
  • 58 Gubler M C, Yang Y, Jeanpierre C, Barbaux S, Niaudet P. WT1, renal development, and glomerulopathies.  Adv Nephrol Necker Hosp . 1999;  1 299-315
  • 59 Breslow N, Olshan A, Beckwith J B, Green D M. Epidemiology of Wilms tumor.  Med Pediatr Oncol . 1993;  3 172-181
  • 60 Pritchard-Jones K, Fleming S, Davidson D. The candidate Wilms' tumour gene is involved in genitourinary development.  Nature . 1990;  346 194-197
  • 61 Pelletier J, Bruening W, Kashtan C E. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome.  Cell . 1991;  2 437-447
  • 62 Little M, Wells C. A clinical overview of WT1 gene mutations.  Hum Mutat . 1997;  3 209-225
  • 63 Little M H, Prosser J, Condie A. Zinc finger point mutations within the WT1 gene in Wilms tumor patients.  Proc Natl Acad Sci U S A . 1992;  11 4791-4795
  • 64 Barbaux S, Niaudet P, Gubler M C. Donor splice-site mutations in WT1 are responsible for Frasier syndrome.  Nat Genet . 1997;  4 467-470
  • 65 Klamt B, Koziell A, Poulat F. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/-KTS splice isoforms.  Hum Mol Genet . 1998;  4 709-714
  • 66 Kohsaka T, Tagawa M, Takekoshi Y. Exon 9 mutations in the WT1 gene, without influencing KTS splice isoforms, are also responsible for Frasier syndrome.  Hum Mutat . 1999;  6 466-470
  • 67 Nachtigal M W, Hirokawa Y, Enyeart-VanHouten D L. Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression.  Cell . 1998;  3 445-454
  • 68 Bruening W, Bardeesy N, Silverman B L. Germline intronic and exonic mutations in the Wilms' tumour gene (WT1) affecting urogenital development.  Nat Genet . 1992;  2 144-148
  • 69 Kim J, Prawitt D, Bardeesy N. The Wilms' tumor suppressor gene (wt1) product regulates Dax-1 gene expression during gonadal differentiation.  Mol Cell Biol . 1999;  3 2289-2299
  • 70 Hossain A, Saunders G F. The human sex-determining gene SRY is a direct target of WT1 J Biol Chem .  2001;  20 16817-16823
  • 71 Vainio S, Heikkilä M, Kispert A, Chin N, McMahon A P. Female development in mammals is regulated by Wnt-4 signalling.  Nature . 1999;  397 405-409
  • 72 Jordan B K, Mohammed M, Ching S T. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans.  Am J Hum Genet . 2001;  5 1102-1109
  • 73 Colvin J S, White A C, Pratt S J, Ornitz D M. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme.  Development . 2001;  11 2095-2106
  • 74 Colvin J S, Green R P, Schmahl J, Capel B, Ornitz D M. Male-to-female sex reversal in mice lacking fibroblast growth factor 9.  Cell . 2001;  6 875-889
  • 75 Raymond C S, Parker E D, Kettlewell J R. A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators.  Hum Mol Genet . 1999;  6 989-996
  • 76 Veitia R A, Nunes M, Quintana-Murci L. Swyer syndrome and 46,XY partial gonadal dysgenesis associated with 9p deletions in the absence of monosomy-9p syndrome.  Am J Hum Genet . 1998;  3 901-905
  • 77 Flejter W L, Fergestad J, Gorski J, Varvill T, Chandrasekharappa S. A gene involved in XY sex reversal is located on chromosome 9, distal to marker D9S1779.  Am J Hum Genet . 1998;  3 794-802
  • 78 Yi W, Zarkower D. Similarity of DNA binding and transcriptional regulation by Caenorhabditis elegans MAB-3 and Drosophila melanogaster DSX suggests conservation of sex determining mechanisms.  Development . 1999;  5 873-881
  • 79 Yi W, Ross J M, Zarkower D. Mab-3 is a direct tra-1 target gene regulating diverse aspects of C. elegans male sexual development and behavior.  Development . 2000;  20 4469-4480
  • 80 Calvari V, Bertini V, De Grandi A. A new submicroscopic deletion that refines the 9p region for sex reversal.  Genomics . 2000;  3 203-212
  • 81 Raymond C S, Murphy M W, O'Sullivan M G, Bardwell V J, Zarkower D. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation.  Genes Dev . 2000;  20 2587-2595
    >