Synlett 2002(11): 1823-1826
DOI: 10.1055/s-2002-34884
LETTER
© Georg Thieme Verlag Stuttgart · New York

Alkylation of Active Methylenes via Benzhydryl Cations

Fabrice Bisaro, Guillaume Prestat, Maxime Vitale, Giovanni Poli*
Laboratoire de Chimie Organique, UMR 7611 CNRS, Université Pierre et Marie Curie, Tour 44-45, 4, Place Jussieu, Boîte 183, 75252, Paris, Cedex 05, France
Fax: +33(1)44277567; e-Mail: poli@ccr.jussieu.fr;
Further Information

Publication History

Received 26 July 2002
Publication Date:
21 October 2002 (online)

Abstract

The acid mediated reaction between active methylenes and benzhydryl alcohols, or their derivatives, is reported. Ethyl acetoacetate, acetylacetone, and N,N-dibenzyl-malonamic acid methyl ester are benzhydrylated in quantitative yields in the presence of molar amounts of BF3·OEt2 in CH2Cl2 at r.t. TMSOTf and H2SO4 appear to be equally efficient. Use of benzhydryl acetate in place of the starting free alcohol allows lowering of the Lewis acid to catalytic amounts. A general mechanism for this scarcely studied C-C bond formation is presented. Due to the easier availability of alcohols with respect to halides the method may favorably compare with the more classical halide-based basic conditions.

    References

  • 1 Valenta V. Metys J. Protiva M. Collect. Czech. Chem. Commun.  1982,  47:  984 
  • 3a Adams JT. Abramovitch B. Hauser CR. J. Am. Chem. Soc.  1943,  65:  552 
  • 3b Adams JT. Levine R. Hauser CR. Org. Synth., Coll. Vol. 3   John Wiley and Sons Ltd.; New York: 1955.  p.405 
  • 3c Sawicki E. Olivero VT. J. Org. Chem.  1956,  21:  183 
  • 3d Crimmins TF. Hauser CR. J. Org. Chem.  1967,  32:  2615 
  • 3e Ohshima E. Kumazawa T. Obase H. Chem. Pharm. Bull.  1993,  41:  36 
  • 3f Gálvez N. Molins E. Moreno-Mañas M. Sebastián RM. Serra N. Trepat E. Vallribera A. J. Heterocyclic Chem.  2000,  37:  895 
  • 3g For a Lewis acid catalyzed intramolecular alkylation of alkene-containing active methylenes see: Reetz MT. Chatziiosifidis I. Schwellnus K. Angew. Chem., Int. Ed. Engl.  1981,  20:  687 
  • For Lewis acid mediated alkylation of silyl enol ethers with SN1 reactive halides see:
  • 4a Paterson I. Fleming I. Tetrahedron Lett.  1979,  23:  2179 
  • 4b Reetz MT. Hüttenhain S. Walz P. Löwe U. Tetrahedron Lett.  1979,  51:  4971 
  • 4c Reetz MT. Maier WF. Chatziiosifidis I. Giannis A. Heimbach H. Loewe U. Chem. Ber.  1980,  113:  3741 
  • 6 For a recent application of BF3·OEt2 mediated symmetrical ether synthesis see: Díaz DD. Martín VS. Tetrahedron Lett.  2000,  41:  9993 
  • 8a Gautert P. El-Ghammarti S. Legrand A. Couturier D. Rigo B. Synth. Commun.  1996,  26:  707 
  • 8b Balfe MP. Kenyon J. Thain EM. J. Chem. Soc.  1952,  790 
  • 8c Burton H. Cheesman GWH. J. Chem. Soc.  1953,  986 
  • 8d Bartlett P. McCollum JD. J. Am. Chem. Soc.  1956,  78:  1441 
  • 9a Giambastiani G. Poli G. J. Org. Chem.  1998,  63:  9608 
  • 9b Tamaru Y. Horino Y. Araki M. Tanaka S. Kimura M. Tetrahedron Lett.  2000,  41:  5705 
  • For an example of complexation between BF3·OEt2 and tetronic derivatives during acylations see:
  • 11a Jones RF. Peterson GE. Tetrahedron Lett.  1983,  24:  4757 
  • 11b Jones RF. Begley MJ. Peterson GE. Sumaria S. J. Chem. Soc. Perkin Trans. 1  1990,  1959 
  • For examples of active methylene enolization by means of metal salts see:
  • 12a Moreno-Mañas M. Marquet J. Vallribera A. Tetrahedron  1996,  52:  3377 
  • 12b Gómez-Bengoa E. Cuerva JM. Mateo C. Echavarren AM. J. Am. Chem. Soc.  1996,  118:  8553 
  • 12c Christoffers J. Chem. Commun.  1997,  943 
  • 12d Christoffers J. Eur. J. Org. Chem.  1998,  1259 
  • 12e Bartoli G. Bosco M. Bellucci MC. Marcantoni E. Sambri L. Torregiani E. Eur. J. Org. Chem.  1999,  617 
  • 13a Bolm C. Muniz K. Chem. Commun.  1999,  1295 
  • 13b Bolm C. Hermanns N. Hildebrand JP. Muniz K. Angew. Chem. Int. Ed.  2000,  39:  3465 
  • 13c Bolm C. Kesselgruber M. Hermanns N. Hildebrand JP. Raabe G. Angew. Chem. Int. Ed.  2001,  40:  1488 
2

Poli, G.; Giambastiani, G. J. Org. Chem., 2002 in press.

5

Representative experimental procedure: To a stirred solution of benzhydryl alcohol (202 mg, 1.1 mmol) and ethyl acetoacetate (127 µL, 1 mmol) in CH2Cl2 (20 mL) under nitrogen was added BF3·OEt2 (217 µL, 1.2 mmol) at r.t. The mixture was stirred for 1 hour before saturated NaHCO3 solution (10 mL) was added. The aqueous layer was extracted with CH2Cl2 (10 mL). The organic layers were washed with brine (10 mL) dried (MgSO4) and concentrated under reduced pressure. Short column chromatography (hexane/EtOAc = 8:2) afforded quantitatively ethyl 2-benzhydryl-3-oxo-butanoate. 1H NMR (CDCl3, 400 MHz): δ(ppm) 7.5-7.1 (m, 10 H, H), 4.81 (d, 1 H, 3 J = 12.3 Hz), 4.58 (d, 1 H, 3 J = 12.3 Hz), 4.01 (q, 2 H, 3 J = 7.1 Hz), 2.12 (s, 3 H), 1.02 (t, 3 H, 7.1). 13C NMR: δ(ppm) 201.7, 167.6, 141.5, 141.2, 128.8-126.8, 65.2, 61.4, 50.8, 30.0, 13.7.

7

Experiments with dimethyl malonate, methyl phenylsulfonyl acetate and bis-phenylsulfonylmethane gave back the unreacted methylene plus benzhydryl alcohol dismutation. Meldrum’s acid gave an alkylated/transesterified product. Ethyl malononitrile gave a complex mixture.

10

1H NMR (CDCl3, 400 MHz): coordinated keto form δ = 4.17 (q, 3 J = 7 Hz, 2 H), 3.38 (br s, 2 H); 2.24 (br s, 3 H), 1.26 (t, 3 J = 7 Hz, 3 H); coordinated enol form δ = 11,98 (s, 1 H), 5.32 (s, 1 H), 4.47 (q, 3 J = 7 Hz, 2 H), 2.14 (s, 3 H), 1.38 (t, 3 J = 7 Hz, 3 H).