Am J Perinatol 2002; 19(5): 279-284
DOI: 10.1055/s-2002-33089
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Meconium Stimulates Neutrophil Oxidative Burst

Hanna R. Soukka1,2 , Markku Ahotupa3 , Merja Ruutu3 , Pekka O. Kääpä1,2
  • 1Research Centre of Applied and Preventive Cardiovascular Medicine
  • 2Department of Pediatrics
  • 3MCA Research Laboratory, Department of Physiology, University of Turku, Turku, Finland
Further Information

Publication History

Publication Date:
09 August 2002 (online)

ABSTRACT

Acute lung injury induced by meconium aspiration is characterized by rapidly developing pulmonary inflammation with influx of activated polymorphonuclear cells. To evaluate the role of meconium in the activation of these invading cells, we described the oxidative capacity of circulating neutrophils after intratracheal administration of thick human meconium in pigs. We also examined the direct effects of varying meconium concentrations on the oxidative burst of human neutrophils in vitro. In neutrophils isolated from meconium-insufflated pigs, phorbol myristate acetate stimulation led to an average 11.7-fold increase in production of reactive oxygen species, measured by chemiluminescence, whereas the increase in control cells from saline-instilled pigs was only 3.1-fold, p = .012 between the groups. Activation of unstimulated human leukocytes by meconium resulted in a dose-dependent response. The lowest meconium concentration (0.2 mg/mL) had an inhibitory effect on neutrophil activation, whereas higher concentrations of meconium (1 and 2 mg/mL) increased neutrophil oxygen radical production progressively. These results thus indicate that moderate and high concentrations of aspirated meconium rapidly activate circulating neutrophils with a resulting oxidative burst contributing to pulmonary tissue injury, whereas low contamination of the aspirated material may in fact suppress the development of oxidative lung injury.

REFERENCES

  • 1 Cleary C M, Wiswell T E. Meconium-stained amniotic fluid and the meconium aspiration syndrome: an update.  Pediatr Clin North Am . 1998;  45 551-529
  • 2 Saugstad O D. Oxygen toxicity in the neonatal period.  Acta Paediatr Scand . 1990;  79 881-892
  • 3 Frank L. Developmental aspects of experimental pulmonary oxygen toxicity.  Free Radic Biol Med . 1991;  11 463-494
  • 4 Davey A M, Becker J D, Davis J M. Meconium aspiration syndrome: physiological and inflammatory changes in a newborn piglet model.  Pediatr Pulmonol . 1993;  16 101-108
  • 5 Fujishima S, Aikawa N. Neutrophil-mediated tissue injury and its modulation.  Intensive Care Med . 1995;  21 277-285
  • 6 Siminiak T, Flores N A, Sheridan D J. Neutrophil interactions with endothelium and platelets: possible role in the development of cardiovascular injury.  Eur Heart J . 1995;  16 160-170
  • 7 Zimmerman J J. Bronchoalveolar inflammatory pathophysiology of bronchopulmonary dysplasia.  Clin Perinatol . 1995;  22 429-456
  • 8 de Beaufort J A, Pelikan D MV, Elferink J GR, Berger H M. Effect of interleukin 8 in meconium on in-vitro neutrophil chemotaxis.  Lancet . 1998;  352 102-105
  • 9 Yamada T, Minakami H, Matsubara S, Yatsuda T, Kohmura Y, Sato I. Meconium-stained amniotic fluid exhibits chemotactic activity for polymorphonuclear leukocytes in vitro.  J Reprod Immunol . 2000;  46 21-30
  • 10 Tyler D C, Murphy J, Cheney F W. Mechanical and chemical damage to lung tissue caused by meconium aspiration.  Pediatrics . 1978;  62 454-459
  • 11 Clark P, Duff P. Inhibition of neutrophil oxidative burst and phagocytosis by meconium.  Am J Obstet Gynecol . 1995;  173 1301-1305
  • 12 Kojima T, Hattori K, Fujiwara T, Sasai-Takedatsu M, Kobayashi Y. Meconium-induced lung injury mediated by activation of alveolar macrophages.  Life Sci . 1994;  54 1559-1562
  • 13 Soukka H, Rautanen M, Halkola L, Kero P, Kääpä P. Meconium aspiration induces ARDS-like pulmonary response in lungs of ten-week-old pigs.  Pediatr Pulmonol . 1997;  23 205-211
  • 14 Matsubara S, Yamada T, Minakami H, Takizawa T, Sato I. Meconium-stained amniotic fluid activates polymorphonuclear leukocytes: ultrastructural and enzyme-cytochemical evidence.  Eur J Histochem . 1999;  43 205-210
  • 15 Yamada T, Matsubara S, Minakami H, Kohmura Y, Hiratsuka M, Sato I. Chemotactic activity for polymorphonuclear leukocytes: meconium versus meconium-stained amniotic fluid.  Am J Reprod Immunol . 2000;  44 275-278
  • 16 Wiswell T E, Peabody S S, Davis J M, Slayter M V, Bent R C, Merritt T A. Surfactant therapy and high-frequency jet ventilation in the management of a piglet model of meconium aspiration syndrome.  Pediatr Res . 1994;  36 494-500
  • 17 Ryan S F, Ghassibi Y, Liau D F. Effects of activated polymorphonuclear leukocytes upon pulmonary surfactant in vitro.  Am J Respir Cell Mol Biol . 1991;  4 33-41
  • 18 Gilliard N, Heldt G P, Loredo J. Exposure of the hydrophobic components of porcine lung surfactant to oxidant stress alters surface tension properties.  J Clin Invest . 1994;  93 2608-2615
  • 19 Clark D A, Nieman G F, Thompson J E, Paskanik A M, Rochar J E, Bredenberg C E. Surfactant displacement by meconium free fatty acids: an alternative explanation for atelectasis in meconium aspiration syndrome.  J Pediatr . 1987;  110 765-770
  • 20 Moses D, Holm B A, Spitale P, Liu M, Enhorning G. Inhibition of pulmonary surfactant function by meconium.  Am J Obstet Gynecol . 1991;  164 477-481
  • 21 Sun B, Curstedt T, Robertson B. Surfactant inhibition in experimental meconium aspiration.  Acta Paediatr . 1993;  82 182-189
  • 22 Chao W, Spragg R G, Smith R M. Inhibitory effect of porcine surfactant on the respiratory burst oxidase in human neutrophils.  J Clin Invest . 1995;  96 2654-2660
  • 23 Gregory G A, Gooding C A, Phibbs R H, Tooley W H. Meconium aspiration in infants: a prospective study.  J Pediatr . 1974;  85 848-852
  • 24 McCord J M. Oxygen-derived free radicals in postischemic tissue injury.  N Engl J Med . 1985;  312 159-163
  • 25 Higgins S T, Wu A, Sen N, Spitzer A R, Chander A. Meconium increases surfactant secretion in isolated rat alveolar type II cells.  Pediatr Res . 1996;  39 443-447
  • 26 Kääpä P, Kytölä J, Soukka H, Ahotupa M. Human meconium has potent antioxidative properties.  Biol Neonate . 1997;  72 71-75
  • 27 Perlman E L, Moore G W, Hutchins G M. The pulmonary vasculature in meconium aspiration.  Hum Pathol . 1989;  20 701-706
  • 28 Steinhorn R H, Millard S L, Morin F C. Persistent pulmonary hypertension of the newborn: role of nitric oxide and endothelin in pathophysiology and treatment.  Clin Perinatol . 1995;  22 405-428
  • 29 Fardy C H, Silverman M. Antioxidants in neonatal lung disease.  Arch Dis Child . 1995;  73 F112-F117
  • 30 Tate R M, Morris H G, Schroeder W R, Repine J E. Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs.  J Clin Invest . 1984;  74 608-613
  • 31 Sanderud J, Norstein J, Saugstad O D. Reactive oxygen metabolites produce pulmonary vasoconstriction in young pigs.  Pediatr Res . 1991;  29 543-547