RSS-Feed abonnieren
DOI: 10.1055/s-2002-32978
Mannich-type Reaction Catalyzed by HBF4 in Water: Effect of the Loading of Surfactant
Publikationsverlauf
Publikationsdatum:
25. Juli 2002 (online)
Abstract
The HBF4 (0.1 equiv)-catalyzed Mannich-type reactions of ketene silyl acetals with aldimines proceeded smoothly in water in the coexistence of as low as 1 mol% of SDS. Furthermore, the Mannich-type reaction also took place in water in the absence of SDS by means of 0.3 equiv of HBF4 to afford the corresponding β-amino esters in high yields.
Key words
Brønsted acid - surfactant - Mannich-type reactions - Schiff bases - water
- For reviews, see:
-
1a
Reissig H.-U. In Organic Synthesis Highlights VCH; Weinheim: 1991. p.71 -
1b
Li C.-J. Chem. Rev. 1993, 93: 2023 -
1c
Li C.-J.Chan T.-H. Organic Reactions in Aqueous Media John Wiley; New York: 1997. -
1d
Lubineau A.Aug J.Queneau Y. Synthesis 1994, 741 -
1e
Li C.-J. Tetrahedron 1996, 52: 5643 -
1f
Organic Reactions
in Water
Grieco P. Blackie Academic and Professional; London: 1998. -
1g In Topics In Current Chemistry, Modern Solvents In Organic Synthesis
Knochel P.Houk KN.Kessler H. Springer Verlag; Berlin: 1999. p.206 - 2 For an example, see:
Ribe S.Wipf P. Chem. Commun. 2001, 299 -
3a
Kleinman EF. Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.893 -
3b
Arend M.Westermann B.Risch N. Angew. Chem. Int. Ed. 1998, 37: 1045 -
3c
Kobayashi S.Ishitani H. Chem. Rev. 1999, 99: 1069 - Selected examples of Mannich-type reactions, see:
-
4a
Ojima I.Inaba S.Yoshida K. Tetrahedron Lett. 1977, 3643 -
4b
Pilli RA.Russowsky D. J. Chem. Soc., Chem. Commun. 1987, 1053 -
4c
Guanti G.Narisano E.Banfi L. Tetrahedron Lett. 1987, 28: 4331 -
4d
Mukaiyama T.Kashiwagi K.Matsui S. Chem. Lett. 1989, 1397 -
4e
Mukaiyama T.Akamatsu H.Han JS. Chem. Lett. 1990, 889 -
4f
Onaka M.Ohno R.Yanagiya N.Izumi Y. Synlett 1993, 141 -
4g
Ishihara K.Funahashi K.Hanaki N.Miyata M.Yamamoto H. Synlett 1994, 963 -
4h
Ishihara K.Miyata M.Hattori K.Tada T.Yamamoto H. J. Am. Chem. Soc. 1994, 116: 10520 -
4i
Miura K.Nakagawa T.Hosomi A. J. Am. Chem. Soc. 2002, 124: 536 - Examples of three-component Mannich-type reactions, see:
-
5a
Kobayashi S.Ishitani H. Chem. Commun. 1995, 1379 -
5b
Kobayashi S.Busujima T.Nagayama S. Chem. Commun. 1998, 19 -
5c
Kobayashi S.Busujima T.Nagayama S. Synlett 1999, 545 -
5d
Manabe K.Mori Y.Kobayashi S. Synlett 1999, 1401 -
5e
Loh T.-P.Wei L.-L. Tetrahedron Lett. 1998, 39: 323 -
5f
Loh T.-P.Liung SBKW.Tan K.-L.Wei L.-L. Tetrahedron 2000, 56: 3227 -
5g
Shimizu M.Itohara S. Synlett 2000, 1828 -
5h
Shimizu M.Itohara S.Hase E. Chem. Commun. 2001, 2318 - Recent examples of asymmetric synthesis, see:
-
6a
List B. J. Am. Chem. Soc. 2000, 122: 9336 -
6b
Juhl K.Gathergood N.Jørgensen KA. Angew. Chem. Int. Ed. 2001, 40: 2995 -
6c
Gastner T.Ishitani H.Akiyama R.Kobayashi S. Angew. Chem. Int. Ed. 2001, 40: 1896 -
6d
Xue S.Yu S.Deng Y.Wulff WD. Angew. Chem. Int. Ed. 2001, 41: 2271 ; see also references cited therein -
7a
Akiyama T.Takaya J.Kagoshima H. Chem. Lett. 1999, 947 -
7b
Akiyama T.Takaya J.Kagoshima H. Synlett 1999, 1045 -
8a
Akiyama T.Takaya J.Kagoshima H. Synlett 1999, 1426 -
8b
Akiyama T.Takaya J.Kagoshima H. Tetrahedron Lett. 2001, 42: 4025 -
8c
Akiyama T.Takaya J.Kagoshima H. Adv. Synth. Catal. 2002, 344: 338 - 9
Akiyama T.Takaya J.Kagoshima H. Tetrahedron Lett. 1999, 40: 7831 - Recent examples of synthetic reactions in water in the co-existence of surfactant, see:
-
11a
Kobayashi S.Wakabayashi T.Nagayama S.Oyamada H. Tetrahedron Lett. 1997, 38: 4559 -
11b
Manabe K.Mori Y.Kobayashi S. Synlett 1999, 1401 -
11c
Yonehara K.Ohe K.Uemura S. J. Org. Chem. 1999, 64: 9381 -
11d
Yonehara K.Hashizume T.Mori K.Ohe K.Uemura S. J. Org. Chem. 1999, 64: 5593 -
11e
Manabe K.Mori Y.Kobayashi S. Tetrahedron 2001, 57: 2537 -
11f
Lautens M.Roy A.Fukuoka K.Fagnou K.Martin-Matute B. J. Am. Chem. Soc. 2001, 123: 5358 - 15
Manabe K.Mori Y.Wakabayashi T.Nagayama S.Kobayashi S. J. Am. Chem. Soc. 2000, 122: 7202
References
We optimized the loading of SDS by use of a silyl enol ether as a substrate in ref. [8]
12General Experimental Procedure for Protocol A (entry 3 of Table 1). Aq solution of HBF4 (8 µL, 0.0080 mmol, 1.3598 mol/L) was added to a mixture of N-benzylidene-p-anisidine(1) (17 mg, 0.0805 mmol), ketene silyl acetal(2a) (48 µL, 0.241 mmol), SDS (8 µL, 0.0080 mmol, 0.10027 mol/L solution) in H2O (0.5 mL) at r.t. After being stirred at the temperature for 0.5 h, the reaction was quenched by addition of sat. NaHCO3 and CH2Cl2. The aq layer was extracted with CH2Cl2 and the combined organic layers were washed with brine, dried over anhyd Na2SO4, and concentrated to dryness. Purification of the crude mixture by preparative TLC (SiO2, hexane:ethyl acetate = 10:1, v/v) gave 3a in 94% yield.
13Because H3PO4 also worked equally as a Brønsted acid for the present Mannich-type reaction, presence of the fluoride ion, which might be generated from HBF4, is not essential for the Mannich-type reaction. Authors are grateful to a referee for pointing out the issue.
14General Experimental Procedure for Protocol B (entry 5 of Table 1). Aq solution of HBF4 (48 µL, 0.0480 mmol, 1.0 mol/L) was added to a mixture of N-benzylidene-p-anisidine(1) (33.6 mg, 0.159 mmol), ketene silyl acetal (2a) (99 µL, 0.477 mmol) in H2O (1.0 mL) at r.t. After being stirred at the temperature for 0.5 h, the reaction was quenched by addition of sat. NaHCO3 and CH2Cl2. The aq layer was extracted with CH2Cl2 and the combined organic layers were washed with brine, dried over anhyd Na2SO4, and concentrated to dryness. Purification of the crude mixture by preparative TLC (SiO2, hexane:ethyl acetate = 10:1, v/v) gave 3a in 81% yield.