Subscribe to RSS
DOI: 10.1055/s-2002-32582
Enantioselective Sulfide Oxidation with H2O2: A Solid Phase and Array Approach for the Optimisation of Chiral Schiff Base-Vanadium Catalysts
Publication History
Publication Date:
07 February 2007 (online)
Abstract
Two libraries of chiral Schiff base ligands were synthesised and screened in the vanadium-catalysed oxidation of alkyl aryl sulfides with hydrogen peroxide as terminal oxidant. The vanadium-chiral Schiff base complex 10, readily prepared from 3,5-diiodo-salicylaldehyde and (S)-tert-leucinol, was found to be highly enantioselective. Optically active sulfoxides could thus be obtained in good yields with up to 97% ee.
Key words
asymmetric catalysis - Schiff bases - hydrogen peroxide - enantioselective sulfoxidation - supported catalysts
- 1
Carreño MC. Chem. Rev. 1995, 95: 1717 -
2a
Pezet F.Aït-Haddou H.Daran J.-C.Sasaki I.Balavoine GGA. Chem. Commun. 2002, 510 -
2b
Hiroi K.Suzuki Y.Abe I.Kawagishi R. Tetrahedron 2000, 56: 4701 -
2c
Tokunoh R.Sodeoka M.Aoe K.-I.Shibasaki M. Tetrahedron Lett. 1995, 36: 8035 - Examples of biologically active sulfoxides:
-
3a RP 73163:
Pitchen P. Chem. Ind. (London) 1994, 16: 636 -
3b Pantoprazole:
Tanaka M.Yamazaki H.Hakusui H.Nakamichi N.Sekino H. Chirality 1997, 9: 17 -
3c Ustiloxine:
Hutton CA.White JM. Tetrahedron Lett. 1997, 38: 1643 -
3d OPC-29030:
Morita S.Matsubara J.Otsubo K.Kitano K.Ohtani T.Kawano Y.Uchida M. Tetrahedron: Asymmetry 1997, 8: 3707 -
3e Methionine Sulfoxide:
Holland HL.Brown FM. Tetrahedron: Asymmetry 1998, 9: 535 -
3f Omeprazole:
von Unge S.Langer V.Sjölin L. Tetrahedron: Asymmetry 1997, 8: 1967 -
3g Esomeprazole:
Cotton H.Elebring T.Larsson M.Li L.Sörensen H.von Unge S. Tetrahedron: Asymmetry 2000, 11: 3819 -
3h ZD3638:
Moseley JD.Moss WO.Welham MJ. Org. Process Res. Dev. 2001, 5: 491 -
4a
Kagan H. In Catalytic Asymmetric SynthesisOjima I. Wiley-VCH; New York: 2000. Chap. 6c. -
4b
Kagan H. In Asymmetric Oxidation reactions: Practical Approach in ChemistryKatsuki T. Oxford University press; Oxford: 2001. Chap. 4.1. - 5
Pitchen P.Duñach E.Deshmukh MN.Kagan HB. J. Am. Chem. Soc. 1984, 106: 8188 - 6
Di Furia F.Modena G.Seraglia R. Synthesis 1984, 325 -
7a
Brunel J.-M.Kagan HB. Synlett 1996, 404 -
7b
Brunel J.-M.Kagan HB. Bull. Soc. Chim. Fr. 1996, 133: 1109 -
8a
Donnoli MI.Superchi S.Rosini C. J. Org. Chem. 1998, 63: 9392 -
8b
Bonchio M.Licini G.Di Furia F.Mantovani S.Modena G.Nugent WA. J. Org. Chem. 1999, 64: 1326 -
8c
Martyn LJP.Pandiaraju S.Yudin AK. J. Organomet. Chem. 2000, 603: 98 -
8d
Kokubo C.Katsuki T. Tetrahedron 1996, 52: 13895 -
8e
Peng Y.Feng X.Cui X.Jiang Y.Chan ASC. Synth. Commun. 2001, 31: 2287 -
8f
Alcón MJ.Corma A.Iglesias M.Sánchez F. J. Mol. Catal. A: Chem. 2002, 178: 253 -
9a
Mekmouche Y.Hummel H.Ho RYN.Que L.Schünemann V.Thomas F.Trautwein AX.Lebrun C.Gorgy K.Leprêtre J.-C.Collomb M.-N.Deronzier A.Fontecave M.Ménage S. Chem.-Eur. J. 2002, 8: 1196 -
9b
Saito B.Katsuki T. Tetrahedron Lett. 2001, 42: 3873 -
9c
Brinksma J.La Crois R.Feringa BL.Donnoli MI.Rosini C. Tetrahedron Lett. 2001, 42: 4049 -
10a
Bolm C.Bienewald F. Angew. Chem., Int. Ed. Engl. 1995, 34: 2640 -
10b
Vetter AH.Berkessel A. Tetrahedron Lett. 1998, 39: 1741 -
10c
Skarzewski J.Ostrycharz E.Siedlecka R. Tetrahedron: Asymmetry 1999, 10: 3457 -
10d
Karpyshev NN.Yakovleva OD.Talsi EP.Bryliakov KP.Tolstikova OV.Tolstikov AG. J. Mol. Catal. A: Chem. 2000, 157: 91 -
10e
Ohta C.Shimizu H.Kondo A.Katsuki T. Synlett 2002, 161 - 11
Green SD.Monti C.Jackson RFW.Anson MS.Macdonald SJF. Chem. Commun. 2001, 2594 - 12
Bryliakov KP.Karpyshev NN.Fominsky SA.Tolstikov AG.Talsi EP. J. Mol. Catal. A: Chem. 2001, 171: 73 - 14
Hofsløkken NU.Skattebøl L. Acta Chem. Scand. 1999, 53: 258 -
17a
Canali L.Cowan E.Deleuze H.Gibson CL.Sherrington DC. J. Chem. Soc., Perkin Trans. 1 2000, 2055 -
17b
Reger TS.Janda KD. J. Am. Chem. Soc. 2000, 122: 6929 -
17c
Sigman MS.Jacobsen EN. J. Am. Chem. Soc. 1998, 120: 4901 - 19
Boehlow TR.Harburn JJ.Spilling CD. J. Org. Chem. 2001, 66: 3111
References
Compound 5: 1H NMR (CDCl3, 250 MHz) δ = 10.30 (s, 1 H), 7.15 (m, 2 H), 6.08 (ddt, 1 H, J = 17.0, 10.5, 5.0 Hz), 5.52 (dd, 1 H, J = 17.0, 1.5 Hz), 5.33 (dd, 1 H, J = 10.5, 1.5 Hz), 4.46 (br. d, 2 H, J = 5.0 Hz), 3.98 (br. t, 2 H, J = 5.0 Hz), 2.46 (br. t, 2 H, J = 7.0 Hz), 1.85 (m, 4 H), 1.41 (s, 9 H); 13C NMR (CDCl3, 62 MHz) δ = 190.4, 179.2, 156.5, 154.8, 145.6, 132.7, 130.3, 122.5, 117.5, 108.3, 79.9, 67.7, 35.2, 33.5, 30.7 (3 C), 28.5, 21.4; MS (ES) m/z = 335 (M + H+), 279, 251, 233.
15Chiral amino acids failed to react with supported salicylaldehyde 6.
16Typical procedure: Solid supported Schiff base 7 (6 µmol, 0.012 equiv) was weighed in an Alltech tube and the resin was swollen in CH2Cl2 for 1 h. A 0.04 M solution of VO(acac)2 in CH2Cl2 (1 mL, 40 µmol) was added and the mixture was shaken for 1 h. The solution was filtered and the resin washed with CH2Cl2 (5 × 2 mL) and transferred into a reaction test tube. A 0.5 M solution of thioanisole (1 mL, 0.5 mmol, 1 equiv) and 1,2,3-trimethoxybenzene (0.1 mmol, 0.2 equiv, internal standard) in CH2Cl2 was added, followed by 7% H2O2 in H2O (240 µL, 1.1 equiv). The reaction mixture was stirred for 16 h and analysed by chiral HPLC (Chiralcel OD-H, 5% EtOH in heptane, 1 mL/min, 227 nm). Retention times: 4.2 min(thioanisole), 7.1 min (internal standard), 11.7 min (R-methyl-phenylsulfoxide), 13.1 min (S-methyl-phenylsulfoxide), 14.3 min (methyl-phenylsulfone).
184-Bromo-1-hydroxy-2-naphthaldehyde was prepared by bromination of 1-hydroxy-2-naphthaldehyde with N-bromosuccinimide according to a literature procedure [19] and isolated in 60% yield. Spectroscopic data: 1H NMR (CDCl3, 250 MHz) δ = 12.60 (s, 1 H), 9.92 (s, 1 H), 8.49 (d, 1 H, J = 8.5 Hz), 8.19 (d, 1 H, J = 8.5 Hz), 7.80 (t, 1 H, J = 8.5 Hz), 7.80 (s, 1 H), 7.63 (t, 1 H, J = 8.5 Hz); 13C NMR (CDCl3, 62 MHz) δ = 195.2, 161.3, 135.5, 131.8, 129.4, 127.2, 126.9, 125.8, 124.8, 114.8, 112.1.
20Compound 10: 1H NMR (CDCl3, 250 MHz) δ = 14.85 (br. s, 1 H), 8.10 (s, 1 H), 8.00 (d, 1 H, J = 2.0 Hz), 7.51 (d, 1 H, J = 2.0 Hz), 3.99 (dd, 1 H, J = 11.5, 2.5 Hz), 3.69 (dd, 1 H, J = 11.5, 9.5 Hz), 3.07 (dd, 1 H, J = 9.5, 2.5 Hz), 1.00 (s, 9 H); 13C NMR (CDCl3, 62 MHz) δ = 166.5, 164.6, 149.9, 141.0, 117.0, 92.6, 78.2, 75.9, 61.8, 32.9, 26.8 (3 C); MS (ES) m/z = 474 (M + H+).
21Compound 11: 1H NMR (CDCl3, 250 MHz) δ = 13.57 (br. s, 1 H), 8.39 (d, 1 H, J = 8.0 Hz), 7.98 (d, 1 H, J = 8.0 Hz), 7.70 (m, 1 H), 7.67 (t, 1 H, J = 8.0 Hz), 7.49 (t, 1 H, J = 8.0 Hz), 7.01 (s, 1 H), 4.06 (dd, 1 H, J = 11.5, 3.0 Hz), 3.76 (br. t, 1 H, J = 10.5 Hz), 3.16 (m, 1 H), 1.07 (s, 9 H); 13C NMR (CDCl3, 62 MHz) δ = 177.1, 162.2, 135.9, 131.5, 130.7, 127.7, 126.1, 125.5, 109.4, 107.0, 75.2, 62.3, 33.5, 27.2 (3 C); MS (ES) m/z = 350 and 352 (M + H+).
22Typical experimental procedure: To a 0.03 M solution of ligand in CH2Cl2 (0.25 mL, 7.5 µmol, 0.015 equiv) was added a 0.02 M solution of VO(acac)2 in CH2Cl2 (0.25 mL, 5 µmol, 0.01 equiv) and the resulting mixture was stirred at r.t. for 30 min. A 1 M solution of sulfide in CH2Cl2 (0.5 mL, 0.5 mmol, 1 equiv) was added and after 30 min stirring at r.t., the reaction mixture was cooled down to 0 °C. After 15 min at 0 °C, 27% H2O2 in H2O (65 µL, 1.2 mmol, 1.2 equiv) was added dropwise. The mixture was stirred at 0 °C for 16 h and the solvent evaporated. The crude residue was purified by column chromatography (silica gel, EtOAc-cyclohexane).