Anästhesiol Intensivmed Notfallmed Schmerzther 2002; 37(5): 250-257
DOI: 10.1055/s-2002-30126
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Die kardio-renale Achse: Physiologie, Pathophysiologie und klinische Relevanz?

Cardio-Renal-Axis - Physiology, Pathophysiology, and Clinical Relevance?M.  Heringlake
  • 1Klinik für Anästhesiologie, Medizinische Universität zu Lübeck
Further Information

Publication History

Publication Date:
31 December 2002 (online)

Zusammenfassung

Seit langem ist bekannt, dass Änderungen des intrathorakalen und atrialen Blutvolumens Einfluss auf die Nierenfunktion nehmen. Interessanterweise wird diesem Mechanismus im intensivmedizinischen und anästhesiologischen Schrifttum nur untergeordnete Bedeutung beigemessen. Die vorliegende Übersichtsarbeit erläutert daher die Bedeutung kardiopulmonaler und arterieller Barorezeptoren für die Regulation der Nierenfunktion sowie die humoralen und nervalen Verknüpfungen der sogenannten „kardio-renalen Achse”. Darüber hinaus wird die klinische Relevanz dieser Mechanismen im intensivmedizinischen Kontext erörtert und das Konzept der Prophylaxe und Behandlung des akuten Nierenversagens mit diuretisch wirksamen Substanzen kritisch hinterfragt.

Abstract

It has been known for years that variations in atrial stretch and intrathoracic blood volume may affect kidney function. Interestingly, little information on this topic can be found in the recent literature of critical care medicine and anesthesiology. Hence, this review focusses on the role of low pressure cardiopulmonary and arterial baroreceptors in the regulation of kidney function and the neuro-endocrine mechanisms behind the so-called “cardio-renal axis”. The physiological mechanisms presented in this review may have clinical impact with regard to strategies for the prevention and treatment of acute renal failure and question the usefulness of diuretics to improve kidney function during several shock states.

Literatur

  • 1 Tang A T, El-Gamel A, Keevil B, Yonan N, Deiraniya K A. The effect of “renal-dose” dopamine on renal tubular function following cardiac surgery: assessed by measuring retinol binding protein (RBP).  Eur J Cardiothorac Surg. 1999;  15 717-721
  • 2 Meyer M, Pfarr E, Schirmer G, Überbacher H J, Schope K, Bohm E, Fluge T, Mentz P, Scigalla P, Forssmann W G. Therapeutic use of the natriuretic peptide ularitide in acute renal failure.  Ren Fail. 1999;  21 85-100
  • 3 Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery.  J Am Soc Nephrol. 2000;  11 97-104
  • 4 Schumacher J, Klotz K F. Perioperative Infusionstherapie.  Anaesthesiol Intensivmed. 2001;  36 225-242
  • 5 Henry J P. Historical perspective of cardiorenal integration.  Clin Exp Pharm Physiol. 1995;  22 43-48
  • 6 Maack T. Role of atrial natriuretic peptide in volume control.  Kidney Int . 1996;  49 1732-1737
  • 7 Doyama K, Fukumoto M, Takemura G, Tanaka M, Oda T, Hasegawa K. Expression and distribution of brain natriuretic peptide in human right atria.  J Am Coll Cardiol. 1998;  32 1832-1838
  • 8 Wei C M, Aarhus L L, Miller V M, Burnett J C. Action of C-type natriuretic peptide in isolated canine arteries and veins.  Am J Physiol. 1993;  264 H71-73
  • 9 Forssmann W G. Urodilatin (Ularitide: INN): A renal natriuretic peptide.  Nephron. 1995;  69 211-222
  • 10 Koepchen H P. Kreislaufregulation. In: Trautwein W, Gauer OH, Koepchen HP (Hrsg) Physiologie des Menschen: Herz und Kreislauf. München; Urban und Schwarzenberg 1972: 363 ff
  • 11 Machado B H, Mauad H, Chianca Junior D A, Haibara A S, Colombari E. Autonomic processing of the cardiovascular reflexes in the nucleus tractus solitarii.  Braz J Med Biol Res. 1997;  30 533-543
  • 12 DiBona G F. Neural control of the kidney: functionally specific renal sympathetic nerve fibers.  Am J Physiol. 2000;  279 R1517-R1524
  • 13 Miki K, Hayashida Y, Sagawa S, Shiraki K. Renal sympathetic nerve activity and natriuresis during water immersion in conscious dogs.  Am J Physiol. 1989;  256 R299-R305
  • 14 Clement D L, Pelletier C L, Shepherd J T. Role of vagal efferents in the control of renal, sympathetic nerve activity in the rabbit.  Circ Res. 1972;  31 824-830
  • 15 Kahl F R, Flint J F, Szidon J P. Influence of left atrial distension on renal vasomotor tone.  Am J Physiol. 1974;  226 240-246
  • 16 Thames M D. Contribution of cardiopulmonary baroreceptors to the control of the kidney.  Fed Proc. 1978;  37 1209-1213
  • 17 Goetz K, Drummer C, Zhu J L, Leadley R, Fiedler F, Gerzer R. Evidence that urodilatin, rather than ANP, regulates renal sodium excretion.  J Am Soc Nephrol. 1990;  1 867-874
  • 18 Mancia G, Romero J C, Shepherd J T. Continuous inhibition of renin release in dogs by vagally innervated receptors in the cardiopulmonary region.  Circ Res. 1975;  36 529-535
  • 19 Gauer O H, Henry J P. Circulatory basis of fluid volume control.  Physiol Rev. 1963;  43 423-481
  • 20 Trasher T N, Keil C. Systolic pressure predicts plasma vasopressin responses to hemorrhage and vena caval constriction in dogs.  Am J Physiol . 2000;  279 R1035-1042
  • 21 Knox F G, Granger J P. Control of sodium excretion: an integrative approach. In: Renal Physiology. Handbook of Physiology. Bethesda.  Am Physiol Soc. 1992;  1 (Section 8) 931-936
  • 22 Guyton A C, Coleman T G, Granger H J. Circulation: overall regulation.  Ann Rev Physiol. 1972;  34 13-46
  • 23 Gabrielsen A, Warberg J, Christensen N J, Bie P, Stadeager C, Pump B, Norsk P. Arterial pulse pressure and vasopressin release during graded water immersion in humans.  Am J Physiol. 2000;  278 R1583-1588
  • 24 Gabrielsen A, Videbek R, Johansen L B, Warberg J, Christensen N J, Pump B, Norsk P. Forearm vascular and neuroendocrine responses to graded water immersion in humans.  Acta Physiol Scand. 2000;  169 87-94
  • 25 Grassi G, Giannattasio C, Saino A, Sabadini E, Capozi A, Sampieri L. Cardiopulmonary receptor modulation of plasma renin activity in normotensive and hypertensive subjects.  Hypertension. 1988;  11 92-99
  • 26 Arosio E, De Marchi S, Prior M, Zannoni M, Lucchese L, Lechi A. Activity of cardiopulmonary baroreceptors, peripheral resistance and cutaneous microcirculation in patients with peripheral obstructive arterial disease.  J Intern Med. 2000;  247 471-478
  • 27 Larsen A S, Johansen L B, Stadeager C, Warberg J, Christensen N J, Norsk P. Volume - homeostatic mechanisms in humans during graded water immersion.  J Appl Physiol. 1994;  77 2832-2839
  • 28 Norsk P, Drummer C, Johansen L B, Gerzer R. Effect of water immersion on renal natriuretic peptide (urodilatin) excretion in humans.  J Appl Physiol. 1993;  74 2881-2885
  • 29 Heringlake M, Klaus S, Bahlmann L, Sehested J, Pagel H, Schmucker P. Effects of posture and positive airway pressure on plasma atrial natriuretic and renal urodilatin excretion.  Clin Nephrol. 2001;  56 364-369
  • 30 Gebrielsen A, Sorensen V B, Pump B, Galtius S, Videbek R, Bie P, Warberg J, Christenssen J N, Wroblewski H, Kastrup J, Norsk P. Cardio vascular and neuroendocrine responses to water immersion in compensated heart failure.  Am J Physiol. 2000;  279 H1931-H1940
  • 31 Middlekauf H R, Nitzsche E U, Hamilton M A, Schelbert H R, Fonarow G C, Moriguchi J D, Hage A, Saleh S, Gibbs G. Evidence for preserved cardiopulmonary baroreflex control of renal cortical blood flow in humans with advanced heart failure.  Circulation. 1995;  92 395-401
  • 32 Drummer C, Kentsch M, Otter W, Heer M, Herten M, Gerzer R. Increased renal natriuretic peptide (urodilatin) excretion in heart failure patients.  Eur J Med Res. 1997;  2 347-354
  • 33 Chen H H, Burnett J C. The natriuretic peptides in heart failure: diagnostic and therapeutic potentials.  Proc Am Assoc Physicians. 1999;  111 406-416
  • 34 Thames M D. Acetylstrophanthidin-induced reflex inhibition of canine renal sympathetic nerve activity mediated by cardiac receptors with vagal afferents.  Circ Res. 1979;  44 8-15
  • 35 Gorfinkel H J, Szidon J P, Hirsch L J, Fishman A P. Renal performance in experimental cardiogenic schock.  Am J Physiol. 1972;  222 1260-1268
  • 36 Klopfenstein H S, Mathias D W, Bernath G A, Cogswell T L. Increasing atrial pressure during cardiac tamponade does not elevate plasma levels of the peptide ANP in conscious dogs.  J Physiol. 1990;  421 309-319
  • 37 Kharasch E D, Yeo K T, Kenny M A, Buffington C W. Atrial natriuretic factor may mediate the renal effects of CPAP ventilation.  Anesthesiology. 1988;  69 862-869
  • 38 Kaczmarczyk G, Vogel S, Krebs M, Bunger H, Scholz A. Vasopressin and renin-angiotensin maintain arterial pressure during PEEP in nonexpanded, conscious dogs.  Am J Physiol. 1996;  271 R1396-1402
  • 39 Boemke W, Krebs M O, Djalali K, Bunger H, Kaczmarczyk G. Renal nerves are not involved in sodium and water retention during mechanical ventilationin awake dogs.  Anesthesiology. 1998;  89 942-953
  • 40 Godje O, Peyerl M. Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients.  Eur J Cardiothorac Surg. 1998;  13 533-539
  • 41 Cheatham M L, Safcsak K. Preload assessment in patients with an open abdomen.  J Trauma. 1999;  46 16-22
  • 42 Berdeaux A, Duranteau J. Baroreflex control of regional vascular resistances during simulated orthostatism.  Kidney Int Suppl. 1992;  37 S29-33
  • 43 Hamilton-Davies C, Mythen M G, Salmon J B, Jacobson D, Shukla A, Webb A R. Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry.  Intensive Care Med. 1997;  23 276-281
  • 44 Chang M C, Meredith J W. Cardiac preload, splanchnic perfusion, and their relationship during resuscitation in trauma patients.  J Trauma. 1997;  42 577-582
  • 45 Miller P R, Meredith J W. Randomized, prospective comparison of increased preload versus inotropes in the resuscitation of trauma patients: effects on cardiopulmonary function and visceral perfusion.  J Trauma. 1998;  44 107-113

Dr. med. Matthias Heringlake

Klinik für Anästhesiologie, Medizinische Universität zu Lübeck

Ratzeburger Allee 160

23538 Lübeck

Email: Heringlake@t-online.de