Exp Clin Endocrinol Diabetes 2002; 110(3): 113-118
DOI: 10.1055/s-2002-29087
Articles

© Johann Ambrosius Barth

Endoproteolysis by isolated membrane peptidases reveal metabolic stability of glucagon-like peptide-1 analogs, exendins-3 and -4

A. Thum 1 , K. Hupe-Sodmann 1 , R. Göke 2 , K. Voigt 1 , B. Göke 3 , G. P. McGregor 1
  • 1 Institute of Physiology, Philipps-University, Marburg, Germany
  • 2 Clinical Research Unit for Gastrointestinal Endocrinology, University of Marburg, Germany
  • 3 Department of Medicine II, University of Munich, Klinikum Grosshadern, Munich, Germany
Further Information

Publication History

received 21 September 2001 first decision 26 October 2001

accepted 07 February 2002

Publication Date:
15 May 2002 (online)

Summary

These in vitro studies aimed to characterize the pattern and the kinetics of endoproteolysis of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) and related peptides by native ectopeptidases. Peptides were incubated with isolated rat or pig kidney brush-border microvilli membranes, which are a rich source of the ectopeptidases that are responsible for the post-secretory metabolism of peptide hormones. The proteolytic products were separated by reversed-phase HPLC column chromatography and characterised by molecular mass and primary structure. The relative importance of specific peptidases was established by measuring the effects of specific peptidase inhibitors on the kinetics of proteolysis. Dipeptidyl-peptidase-IV was found to be rate-limiting in the endoproteolysis of GLP-1. GLP-1 homologs, exendins-3 and -4, exhibited exceptional stability in the presence of isolated kidney microvilli membranes. Our finding that exendin-4 is several orders of magnitude more stable than GLP-1 and Ser-8-GLP-1 is especially noteworthy given this peptide's widely reported insulinotropic potency.

References

  • 1 Booth A G, Kenny J. A morphometric and biochemical investigation of the vesiculation of kidney microvilli.  J Cell Sci. 1976;  21 449-463
  • 2 Chou J Z, Place G D, Waters D G, Kirkwood J A, Bowsher R R. A radioimmunoassay for LY315902, an analog of glucagon-like insulinotropic peptide, and its application in the study of canine pharmacokinetics.  J Pharm Sci. 1997;  86 768-773
  • 3 Deacon C F, Hughes T E, Holst J J. Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig.  Diabetes. 1998;  47 764-769
  • 4 Deacon C F, Johnsen A H, Holst J J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo.  J Clin Endocrinol Metab. 1995;  80 952-957
  • 5 Deacon C F, Knudsen L B, Madsen K, Wiberg F C, Jacobsen O, Holst J J. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity.  Diabetologia. 1998;  41 271-278
  • 6 Eng J. Exendin peptides.  Mt Sinai J Med. 1992;  59 147-149
  • 7 Fehmann H C, Goke R, Goke B. Glucagon-like peptide-1(7-37)/(7-36) amide is a new incretin.  Mol Cell Endocrinol. 1992;  85 C39-C44
  • 8 Gallwitz B, Ropeter T, Morys-Wortmann C, Mentlein R, Siegel E G, Schmidt W E. GLP-1-analogues resistant to degradation by dipeptidyl-peptidase IV in vitro.  Regul Pept. 2000;  86 103-111
  • 9 Goke R, Fehmann H C, Linn T, Schmidt H, Krause M, Eng J, Goke B. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells.  J Biol Chem. 1993;  268 19650-19655
  • 10 Greig N H, Holloway H W, De Ore K A, Jani D, Wang Y, Zhou J, Garant M J, Egan J M. Once daily injection of exendin-4 to diabetic mice achieves long-term beneficial effects on blood glucose concentrations.  Diabetologia. 1999;  42 45-50
  • 11 Holst J J, Orskov C, Nielsen O V, Schwartz T W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut.  FEBS Lett. 1987;  211 169-174
  • 12 Hupe-Sodmann K, Goke R, Goke B, Thole H H, Zimmermann B, Voigt K, McGregor G P. Endoproteolysis of glucagon-like peptide (GLP)-1 (7-36) amide by ectopeptidases in RINm5F cells.  Peptides. 1997;  18 625-632
  • 13 Hupe-Sodmann K, McGregor G P, Bridenbaugh R, Goke R, Goke B, Thole H, Zimmermann B, Voigt K. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides.  Regul Pept. 1995;  58 149-156
  • 14 Kenny J, Booth N M. Peptidases involved in the metabolism of bioactive peptides. In Hendrick JH (eds) Degradation of bioactive substances: physiology and pathophysiology. Boca Raton, CRC Press 1991: 47-79
  • 15 Kieffer T J, Habener J F. The glucagon-like peptides.  Endocr Rev. 1999;  20 876-913
  • 16 Kieffer T J, McIntosh C H, Pederson R A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV.  Endocrinology. 1995;  136 3585-3596
  • 17 Kreymann B, Williams G, Ghatei M A, Bloom S R. Glucagon-like peptide-1 7-36: a physiological incretin in man.  Lancet. 1987;  2 1300-1304
  • 18 Larsen P J, Fledelius C, Knudsen L B, Tang-Christensen M. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats.  Diabetes. 2001;  50 2530-2539
  • 19 Medeiros M S, Turner A J. Post-secretory processing of regulatory peptides: the pancreatic polypeptide family as a model example.  Biochimie. 1994;  76 283-287
  • 20 Mentlein R, Gallwitz B, Schmidt W E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36) amide, peptide histidine methionine and is responsible for their degradation in human serum.  Eur J Biochem. 1993;  214 829-835
  • 21 Nauck M A, Kleine N, Orskov C, Holst J J, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients.  Diabetologia. 1993;  36 741-744
  • 22 Pauly R P, Rosche F, Wermann M, McIntosh C H, Pederson R A, Demuth H U. Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide-1-(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach.  J Biol Chem. 1996;  271 23222-23229
  • 23 Pederson R A. Gastric Inhibitory Polypeptide. In Walsh GTDJH (eds) Gut Peptides: Biochemistry and Physiology Raven Press 1994: 217-260
  • 24 Ritzel R, Orskov C, Holst J J, Nauck M A. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP- 1 [7-36 amide] after subcutaneous injection in healthy volunteers. Dose-response-relationships.  Diabetologia. 1995;  38 720-725
  • 25 Ritzel U, Leonhardt U, Ottleben M, Ruhmann A, Eckart K, Spiess J, Ramadori G. A synthetic glucagon-like peptide-1 analog with improved plasma stability.  J Endocrinol. 1998;  159 93-102
  • 26 Sterchi E E, Naim H Y, Lentze M J, Hauri H P, Fransen J A. N-benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase: a metalloendopeptidase of the human intestinal microvillus membrane which degrades biologically active peptides.  Arch Biochem Biophys. 1988;  265 105-118
  • 27 Szayna M, Doyle M E, Betkey J A, Holloway H W, Spencer R G, Greig N H, Egan J M. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats.  Endocrinology. 2000;  141 1936-1941
  • 28 Taylor I L. Role of peptide YY in the endocrine control of digestion.  J Dairy Sci. 1993;  76 2094-2101
  • 29 Thorens B, Porret A, Buhler L, Deng S P, Morel P, Widmann C. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor.  Diabetes. 1993;  42 1678-1682
  • 30 Turner A J, Tanzawa K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX.  Faseb J. 1997;  11 355-364
  • 31 Wolz R L, Bond J S. Meprins A and B.  Methods Enzymol. 1995;  248 325-345
  • 32 Zhou J, Wang X, Pineyro M A, Egan J M. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells.  Diabetes. 1999;  48 2358-2366

Prof. G. P. McGregor

Institute of Physiology

Philipps-University Marburg

Deutschhausstr. 2

D-35037 Marburg

Germany

Phone: +49-6421-285353

Fax: +49-6421-282306

Email: prof.mcgregor@pascoe.de

    >