Subscribe to RSS
DOI: 10.1055/s-2002-25349
Preparation of Pyrenyl-Modified Nucleosides via Suzuki-Miyaura Cross-Coupling Reactions
Publication History
Publication Date:
07 February 2007 (online)
Abstract
The modified nucleosides 5-pyrenyl-2′-deoxyuridine (1) and 8-pyrenyl-2′-deoxyguanosine (2) were synthesized via palladium-catalyzed Suzuki-Miyaura cross-coupling reactions of pyren-1-yl boronic acid (3) to either 5-iodo-2′-deoxyuridine (4), or 8-bromo-2′-deoxyguanosine (7), respectively. No protecting groups for the hydroxy and amino functions of the nucleoside are needed during the preparation. Both pyrene derivatives are suitable nucleoside models for the spectrosopic investigation of reductive electron transfer (in 1), or oxidative hole transfer (in 2).
Key words
charge transfer - nucleoside - cross-coupling - palladium - pyrene
-
1a
Arkin MR.Stemp EDA.Holmlin RE.Barton JK.Hörmann A.Olson EJC.Barbara PF. Science 1996, 273: 475 -
1b
Fukui K.Tanaka K. Angew. Chem. Int. Ed. 1998, 37: 158 -
1c
Kelley SO.Barton JK. Science 1999, 283: 375 -
1d
Jean JM.Hall KB. Proc. Natl. Acad. Sci. U.S.A. 2001, 98: 37 -
1e
Kawai M.Lee MJ.Evans KO.Nordlund TM. J. Fluoresc. 2001, 11: 23 -
1f
Larsen OFA.van Stokkum IHM.Gobets B.van Grondelle R.van Amerongen H. Biophys. J. 2001, 81: 1115 -
2a
Stemp EDA. J. Am. Chem. Soc. 1997, 119: 2921 -
2b
Lewis FD.Liu X.Liu J.Miller SE.Hayes RT.Wasielewski MR. Nature (London) 2000, 406: 51 -
2c
Wan C.Fiebig T.Schiemann O.Barton JK.Zewail AH. Proc. Natl. Acad. Sci. U.S.A. 2000, 97: 14052 -
2d
Shafirovich V.Dourandin A.Huang W.Luneva NP.Geacintov NE. J. Phys. Chem. B 1999, 103: 10924 -
2e
Wagenknecht H.-A.Rajski SR.Pascaly M.Stemp EDA.Barton JK. J. Am. Chem. Soc. 2001, 123: 4400 -
2f
Hess S.Götz M.Davis WB.Michel-Beyerle M.-E. J. Am. Chem. Soc. 2001, 123: 10046 -
2g
Lewis FD.Wu Y. J. Photochem. Photobiol., C 2001, 2: 1 - 3
Schiemann O.Turro NJ.Barton JK. J. Phys. Chem. B 2000, 104: 7214 -
4a
Arkin MR.Stemp EDA.Coates Pulver S.Barton JK. Chem. Biol. 1997, 4: 389 -
4b
Nakatani K.Dohno C.Saito I. J. Am. Chem. Soc. 1999, 121: 10854 -
4c
Williams TT.Odom DT.Barton JK. J. Am. Chem. Soc. 2000, 122: 9048 -
4d
Schuster GB. Acc. Chem. Res. 2000, 33: 253 -
4e
Giese B. Acc. Chem. Res. 2000, 33: 613 -
5a
O’Neill P.Fielden M. Adv. Radiat. Biol. 1993, 17: 53 -
5b
Wang D.Kreutzer DA.Essigmann JM. Mutat. Res. 1998, 400: 99 -
6a
Núñez ME.Hall DB.Barton JK. Chem. Biol. 1999, 6: 85 -
6b
Henderson PT.Jones D.Hampikian G.Schuster GB. Proc. Natl. Acad. Sci. U.S.A. 1999, 96: 8353 -
7a
Boon EM.Ceres D.Drummond TG.Hill MG.Barton JK. Nat. Biotechnol. 2000, 18: 1096 -
7b
Jackson NM.Hill MG. Curr. Opin. Chem. Biol. 2001, 5: 209 -
7c
Fink H.-W.Schönenberger C. Nature (London) 1999, 398: 407 -
7d
Porath D.Bezryadin A.de Vries S.Dekker C. Nature (London) 2000, 403: 635 - 8
Murphy CJ.Arkin MR.Jenkins Y.Ghatlia ND.Bossmann SH.Turro NJ.Barton JK. Science (Washington, D.C.) 1993, 262: 1025 - 9
Schwögler A.Burgdorf LT.Carell T. Angew. Chem. Int. Ed. 2000, 39: 3918 -
10a
Giese B.Spichty M. Chem. Phys. Chem 2000, 1: 195 -
10b
Giese B.Amaudrut J.Köhler A.-K.Spormann M.Wessely S. Nature (London) 2001, 412: 318 - 11
Kool ET.Morales JC.Guckian KM. Angew. Chem. Int. Ed. 2000, 39: 990 - 12
Kubota T.Kano J.Uno B.Konse T. Bull. Chem. Soc. Jpn. 1987, 60: 3865 - 13
Hissung A.Sonntag C. Int. J. Radiat. Biol. 1979, 35: 449 - 14
Steenken S.Jovanovic SV. J. Am. Chem. Soc. 1997, 119: 617 - 15
Netzel TL.Zhao M.Nafisi K.Headrick J.Sigman MS.Eaton BE. J. Am. Chem. Soc. 1995, 117: 9119 -
16a
O’Connor D.Shafirovich VY.Geacintov NE. J. Phys. Chem. 1994, 98: 9831 -
16b
Shafirovich VY.Courtney SH.Ya N.Geacintov NE. J. Am. Chem. Soc. 1995, 117: 4920 - 17
Havelková M.Dvorák D.Hocek M. Synthesis 2001, 1704 - The crude product was purified by column chromatography on silica gel (hexane:EtOAc = 20:1, then EtOH) yielding a pale yellow solid. Rf = 0.42 (hexane:EtOAc = 3:1). All spectroscopic data of 3 were in agreement with the published data in:
-
18a
Suenaga H.Nakashima K.Mizuno T.Takeuchi M.Hamachi I.Shinkai S. J. Chem. Soc., Perkin Trans. 1 1998, 1263 -
18b
Beinhoff M.Weigel W.Jurczok M.Rettig W.Modrakowski C.Brüdgam I.Hartl H.Schlüter AD. Eur. J. Org. Chem. 2001, 3819 - 19 The crude product was purified by column chromatography on silica gel (CH2Cl2/acetone = 4:1) yielding a white solid. Rf = 0.74 (CH2Cl2/acetone = 4:1). All spectroscopic data of 6 were in agreement with the published data in:
Robins MJ.Barr PJ. J. Org. Chem. 1983, 48: 1854 - 21 All spectroscopic data of 7 were in agreement with the published data:
Gannett P.Sura TP. Synth. Commun. 1993, 23: 1611 - 25
Steenken S. Free Rad. Res. Commun. 1992, 16: 349
References
The crude product was purified by column chromatography on silica gel (CH2Cl2/acetone = 4:1 then EtOAc/MeOH = 10:1) yielding a pale yellow solid (70%). Analytical HPLC (RP-18 column, gradient A/B = 10:90 to 90:10 over 45 min, A = MeCN + 0.1% TFA, B = H2O + 0.1% TFA) was performed to ensure the purity of 1 of > 99.5%. Spectroscopical Data of 1: Rf = 0.65 (EtOAc/MeOH/H2O = 10:1:0.5). NMR signals were assigned based on 2D NMR measurements (DQF-COSY, HMQC). 1H NMR (500 MHz, CD3OD): δ = 2.29 (m, J = 6.4 Hz, 2 H, 2′-H), 3.50-3.60 (ddd, J = 12.0 Hz, 3.3 Hz, 2 H, 5′-H), 3.84 (m, J = 3.2 Hz, 1 H, 3′-H), 4.31 (m, J = 4.3 Hz, 1 H, 4′-H), 6.35 (t, J = 6.6 Hz, 1 H, 1′-H), 7.84-8.14 (m, 9 H, Pyren-H), 8.21 (s, 1 H, H-6) ppm; additional signals in 1H NMR (250 MHz, d 6-DMSO): δ = 4.79 (t, 1 H, 5′-OH), 5.24 (d, 1 H, 3′-OH), 11.64 (s, br, 1 H, NH) ppm. 13C{1H} NMR (75 MHz, CD3OD): δ = 174.87, 174.13, 167.41, 163.91, 153.37, 153.15, 144.63, 144.07, 134.89, 134.29, 134.13, 133.93, 131.21, 131.01, 130.45, 129.49, 127.94, 126.83, 103.76, 104.41, 90.16 (4′-C), 87.76 (1′-C), 73.42 (3′-C), 62.67 (5′-H), 42.52 (2′-C) ppm. ESI-MS: m/z = 429 [M + H]+, 451 [M + Na]+, 857 [2 M + H]+, 879 [2 M + Na]+.
22The crude product was purified by column chromatography on silica gel (CH2Cl2/acetone = 4:1 then EtOAc/MeOH = 10:1 then EtOAc/MeOH/H2O = 10:1:0.5) yielding a yellow solid (65%). Analytical HPLC (RP-18 column, gradient A/B = 10:90 to 90:10 over 45 min, A = MeCN + 0.1% TFA, B = H2O + 0.1% TFA) was performed to ensure the purity of 2 of > 99.5%. Rf = 0.73 (EtOAc/MeOH/H2O = 6:2:1). NMR signals were assigned based on 2D-NMR measurements (DQF-COSY, HMQC). 1H NMR (500 MHz, CD3OD): δ = 1.98 (m, J = 13.4 Hz, 5.8 Hz, 1 H, 2′-H), 3.05 (m, 1 H, 2′-H), 3.58-3.72 (m, J = 9.9 Hz, 8.9 Hz, 4.2 Hz, 3 H, 5′-H, 4′-H), 4.32 (m, 1 H, 3′-H), 5.75 (t, J = 7.5 Hz, 1 H, 1′-H), 7.99-8.27 (m, 9 H, Pyren-H) ppm; additional signals in 1H NMR (250 MHz, D6-DMSO): δ = 4.93 (m, 2 H, 5′-OH, 3′-OH), 6.47 (s br, 2 H, NH2), 10.87 (s br, 1 H, NH) ppm; no 13C NMR data could be obtained due to the low solubility of 2 in suitable NMR solvents. ESI-MS: m/z = 468 [M + H]+, 490 [M + Na]+, 936 [2 M + H]+, 959 [2 M + Na]+.
23Steady-state fluorescence spectroscopy was performed at r.t. on a Spex Fluoromax II spectrometer. The emission spectra are corrected according to detection system variation with wavelength. UV/Vis absorbance spectroscopy was performed at r.t. on a Varian Cary 50 photometer. Dry solvents (Fluka puriss. over molecular sieve, water < 0.01%) were used for the measurements. The septum-closed cuvettes were filled under argon.
24Amann, N.; Pandurski, E.; Wagenknecht, H.-A.; Fiebig, T. in preparation.
26Currently, time-resolved spectroscopic measurements on the femtosecond time scale are performed in order to detect and characterize the short-lived intermediates by their transient absorption: Amann, N.; Pandurski, E.; Wagenknecht, H.-A.; Fiebig, T. in preparation.