Laryngorhinootologie 2002; 81(S1): 1-23
DOI: 10.1055/s-2002-25044
© Georg Thieme Verlag Stuttgart · New York

Grundlagen der In-vivo-Regeneration im Kopf-Hals-Bereich

H.  Löwenheim1
  • 1Universitäts-Hals-Nasen-Ohren-Klinik, Tübingen
Further Information

Publication History

Publication Date:
12 April 2002 (online)

1 Stellung der In-vivo-Regeneration in der Regenerationsmedizin

1.1 Die In-vivo-Regeneration - anspruchsvolles Konzept der Regenerationsmedizin

„If there were no regeneration, there could be no life.
If everything regenerated there would be no death.”
(Richard Goss, „Principles of Regeneration”, 1969)

Inhaltsverzeichnis 1 Stellung der In-vivo-Regeneration in der Regenerationsmedizin … 1 1.1 Die In-vivo-Regeneration - anspruchsvolles Konzept der Regenerationsmedizin … 1 2 Regenerationsbiologische Grundlagen … 2 2.1 Beginn der regenerationsbiologischen Forschung - In der Wiege liegt der Kopf der Hydra … 2 2.2 Das Phänomen der Regeneration - Mythos im molekularbiologischen Zeitalter? … 4 2.3 Regeneration in der Phylogenese - Ein Weg von der Hydra zum Menschen? … 5 2.4 Regenerationsmechanismen - Morphallaxis und Epimorphose … 5 2.4.1 Morphallaxis - der Kopfaktivator: molekulares Signal der Kopfregeneration … 5 2.4.2 Epimorphe Regeneration ohne Blastembildung - Wiederentdeckung des Prometheus … 6 2.4.3 Epimorphe Regeneration mit Blastembildung … 8 2.5 Regeneration und Onkologie … 9 3 In-vivo-Regeneration in der Kopf-Hals-Region … 9 3.1 Innenohr … 9 3.2 Speicheldrüsen … 16 3.3 Kopf-Hals-Region … 17 3.3.1 Haut … 17 3.3.2 Knorpel … 19 3.3.3 Komplexe Gewebedefekte … 19 4 Schlussbemerkung … 20 5 Literatur … 20

Die Regenerationsmedizin verspricht eine der Schlüsseldisziplinen in der Biomedizin des 21. Jahrhunderts zu werden. Derzeit werden bei der Entwicklung der Regenerationsmedizin drei Konzepte unterschieden. Diese sind (1) die Zelltransplantation unter Verwendung multi- und pluripotenter Stammzellen, (2) die bioartifizielle Gewebeimplantation durch Zellaussaat auf biokompatiblen und biodegradierbaren Materialien und (3) die In-vivo-Regeneration durch Stimulation zellulärer Regeneration in Residualgeweben. Die wissenschaftlichen Voraussetzungen dieser drei anwendungsorientierten Konzepte werden in bestimmten Disziplinen der Grundlagenforschung geschaffen. Für die Zelltransplantation sind Stammzellbiologie und Immunologie von Bedeutung. Bei der Implantation bioartifizieller Gewebe ist durch die Zusammenfassung von Biomaterialwissenschaft und Zellbiologie unter dem Begriff „tissue engineering” eine neue Disziplin definiert worden. Für die In-vivo-Regeneration finden sich entscheidende regenerationsbiologische Ausgangspunkte in der Entwicklungsbiologie, der Zellzyklusbiologie und der Altersbiologie. Sie lassen sich unter dem zwar nicht neuen, aber bisher wenig verbreiteten Begriff der Regenerationsbiologie zusammenfassen (s. Abb. [1]).

Abb. 1 Die in der Regenerationsmedizin derzeit bestehenden Konzepte sind die Zelltransplantation, die bioartifizielle Gewebeimplantation und die In-vivo-Regeneration. Diesen Gebieten sind jeweils Disziplinen der Grundlagenwissenschaft zugeordnet. Die Zelltransplantation versucht mit Hilfe autogener, allogener und xenogener Zelltransplantation eine Geweberegeneration zu induzieren. Die wissenschaftlichen Grundlagen hierzu kommen aus der Stammzellbiologie. Bei der bioartifiziellen Gewebeimplantation werden Biomaterialgerüste mit Zellen besiedelt und anschließend implantiert. Zellbiologie und Biomaterialwissenschaft werden als zugeordnete Grundlagenwissenschaften unter dem Begriff tissue engineering zusammengefasst. Bei den verwendeten Zellen kann es sich wie bei der Zellimplantation z. B. um Stammzellen handeln, so dass hier eine Verbindung zwischen den beiden Konzepten besteht. Die In-vivo-Regeneration nutzt oder induziert die körpereigene Regenerationskompetenz in Residualgeweben. Da die Regenerationskompetenz zum Teil von im Gewebe residenten Stammzellen abhängt, besteht ein Bezug zur Stammzellbiologie und Zellimplantation. Auch implantierte Biomaterialien können die körpereigenen Regenerationsmechnismen leiten oder verstärken.

Derzeit befinden sich alle drei genannten Konzepte noch in der Frühphase ihrer Entwicklung, und es bleibt offen, welches Konzept der Lösung einer bestimmten medizinischen Problemstellung dienen kann. Dennoch lassen sich bei der jeweiligen Grundkonzeption jeweils einige Vor- und Nachteile erkennen, die Möglichkeiten und Grenzen der jeweiligen Konzepte bestimmen werden. Die Forschung sieht sich entsprechend mit der Lösung spezifischer Aufgaben konfrontiert.

Für die Stammzellbiologie und das tissue engineering sind dies Fragen (1) der gerichteten Zelldifferenzierung, (2) der Immunabstoßung und (3) ethische Überlegungen. Autogene und allogene Stammzellen stellen eine theoretisch unerschöpfliche Quelle für die direkte Zelltransplantation und die Besiedlung bioartifizieller Organe dar [106]. Der sinnvolle Einsatz dieser Zellen wird jedoch davon abhängen, ob man in der Lage ist, primär undifferenzierte Stammzellen in vitro durch Stimulation mit geeigneten Wachstumsfaktoren in Richtung des gewünschten Phänotyps zu differenzieren, um diese ausgereiften Zellen anschließend in ein ihnen entsprechendes Zielgewebe zu transplantieren. Bei direkter Transplantation von Stammzellen in ein Zielgewebe ist zu untersuchen, ob die Umgebung des adulten Zielgewebes bei Aufnahme undifferenzierter Zellen in der Lage ist, durch lokale vorhandene Faktoren aus der Gewebeumgebung eine gerichtete Differenzierung einzuleiten und diese Zellen funktionell in den Gewebeverband zu integrieren. Beim Aufbau eines Gewebeverbands können durch das tissue engineering mit Hilfe von Biomaterialien geeignete dreidimensionale Strukturen vorgegeben werden, die die Bildung eines Gewebemusters unterstützen bzw. erst erlauben. Die Anforderung an die Materialien sind hoch. Im Sinne eines biomimetischen Musters soll das Biomaterial sowohl konduktive Eigenschaften zur Ermöglichung einer Zelladhäsion und Zellmigration als auch induktive Eigenschaften besitzen, die Zellteilung, Zelldifferenzierung und Gewebeintegration bewirken. Darüber hinaus sollen die Materialien biokompatibel sein und nicht zu einer immunologischen Entzündungs- oder Abstoßungsreaktion führen. Die Verwendung allogener oder xenogener Zellen oder Gewebe bei direkter Transplantation oder in der Kombination mit Biomaterialien bei der Implantation bioartifizieller Gewebe erfordert die Induktion der Immuntoleranz des Empfängers. Hier bemüht man sich mittlerweile neben der medikamentösen Immunsuppression auch um genetische und zellbiologische Strategien. Die ethischen Bedenken bei der Zelltransplantation betreffen die Quelle humaner Stammzellen aus Embryonen oder Föten, die Möglichkeit der Übertragung pathogener Xenomikroorganismen bei tierischem Zell- oder Organursprung sowie so genannte „Monsterexperimente” durch die Schaffung von Tier-Mensch-Zellhybriden oder Embryo-Adult-Zellhybriden. All diese Einwände sind zu berücksichtigen und werden Grenzen aufzeigen.

Die In-vivo-Regeneration umgeht durch Nutzung und Aktivierung der ausschließlich körpereigenen Regenerationsfähigkeit die genannten immunologischen und ethischen Fragen wie sie für die Zelltransplantation und die bioartifizielle Gewebeimplantation zwangsläufig auftreten. Andererseits ist die In-vivo-Regeneration aufgrund der stark limitierten Regenerationskompetenz körpereigener Gewebe in der schwierigsten und gleichzeitig bisher am wenigsten erforschten Ausgangssituation. Bevor die Stimulation von Regeneration in vivo eine klinische Realität werden kann, ist es Aufgabe der regenerationsbiologischen Forschung, (1) Zellen und Gewebe hinsichtlich ihrer Regenerationskompetenz zu klassifizieren, (2) dort wo Regenerationskompetenz nicht vorliegt, diese wiederherzuherstellen und (3) die Signalkaskaden regenerationsbiologisch relevanter Prozesse wie Zellteilung und Zelldifferenzierung auf molekularer Ebene verstehen und steuern zu lernen.

5 Literatur

  • 1 Abraham J A, Klagsbrun M. In: Clark RAF The Molecular and Cellular Biology of Wound Repair Plenum. New York; 1996: 195-248
  • 2 Antz C. Dissertation. Heidelberg; 1994
  • 3 Beer H D, Vindevoghel L, Gait M J, Revest J M, Duan D R, Mason I, Dickson C, Werner S. Fibroblast growth factor (FGF) receptor 1-IIIb is a naturally occurring functional receptor for FGFs that is preferentially expressed in the skin and the brain.  J Biol Chem. 2000;  275(21)
  • 4 Bermingham N A, Hassan B A, Price S D, Vollrath M A, Ben-Arie N, Eatock R A, Bellen H J, Lysakowski A, Zoghbi H Y. Math1: an essential gene for the generation of inner ear hair cells.  Science . 1999;  284(5421) 1837-1841
  • 5 Bibb C, Cambell R D. Tissue healing and septate desmosome formation in hydra.  Tissue Cell. 1993;  5 23-25
  • 6 Borgens R B. Mice regrow the tips of their foretoes.  Science. 1982;  217(4561) 747-750
  • 7 Bosch T CG. Hydra. In: Ferretti P, Geraudie J (eds.) Cellular and Molecular Basis of Regeneration: From Invertebrates to Humans. Sussex; Whiley & Sons Ltd 1998
  • 8 Bossley C J. Conservative treatment of digit amputations.  N Z Med J. 1975;  82(553) 379-380
  • 9 Brauchle M, Fassler R, Werner S. Suppression of keratinocyte growth factor expression by glucocorticoids in vitro and during wound healing.  J Invest Dermatol. 1995;  105(4) 579-584
  • 10 Brook J, Midwinter K, Lewis J, Martin P. Healing of incisional wounds in the embryonic chick wing bud: characterization of the actin purse-string and demonstration of a requirement for Rho activation.  J Cell Biol. 1996;  135(4) 1097-1107
  • 11 Brockes J P. Amphibian limb regeneration: rebuilding a complex structure.  Science. 1997;  276 81-87
  • 12 Brùndsted H V. Planarian regeneration. London; Pergamon Press 1969
  • 13 Burgess K L, Dardick I, Cummins M M, Burford-Mason A P, Bassett R, Brown D H. Myoepithelial cells actively proliferate during atrophy of rat parotid gland.  Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;  82(6) 674-680
  • 14 Burgess K L, Dardick I. Cell population changes during atrophy and regeneration of rat parotid gland.  Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;  85(6) 699-706
  • 15 Candia Carnevali M D, Bonasoro F, Lucca E, Thorndyke M C. Pattern of cell proliferation in the early stages of arm regeneration in the feather star Antedon mediterranea.  J Exp Zool. 1995;  272 64-474
  • 16 Carlson M R, Bryant S V, Gardiner D M. Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs.  J Exp Zool. 1998;  282(6) 715-723
  • 17 Carlson M R, Komine Y, Bryant S V, Gardiner D M. Expression of Hoxb13 and Hoxc10 in developing and regenerating Axolotl limbs and tails.  Dev Biol. 2001;  229(2) 396-406
  • 18 Chardin S, Romand R. Regeneration and mammalian auditory hair cells.  Science. 1995;  267(5198) 707-711
  • 19 Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti.  Development. 1999;  126 1581-1590
  • 20 Clark L D, Clark R K, Heber-Katz E. A new murine model for mammalian wound repair and regeneration.  Clin Immunol Immunopathol. 1998;  88(1) 35-45
  • 21 Clark R AF. The Molecular and Cellular Biology of Wound Repair Plenum. New York; 1996: 3-50
  • 22 Clymer M A, Schwaber M K, Davidson J M. The effects of keratinocyte growth factor on healing of tympanic membrane perforations.  Laryngoscope. 1996;  106 280-285
  • 23 Coats S, Flanagan W M, Nourse J, Roberts J M. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle.  Science. 1996;  272(5263) 877-880
  • 24 Compton C C. Current concepts in pediatric burn care: the biology of cultured epithelial autografts: an eight-year study in pediatric burn patients.  Eur J Pediatr Surg. 1992;  2(4) 216-222
  • 25 Corwin J T. Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: con-tinual increases in hair cell number, neural convergence and physiological sensitivity.  J Comp Neurol. 1983;  217 345-356
  • 26 Corwin J T, Cotanche D A. Regeneration of sensory hair cells after acoustic trauma.  Science. 1988;  240 1772-1774
  • 27 Corwin J T, Jones J E, Katayama A, Kelley M W, Warchol M E. Hair cell regeneration: the identities of progenitor cells, potential triggers and instructive cues.  Ciba Found Symp. 1991;  160 103-120
  • 28 Corwin J T. Postembryonic production and aging in inner ear hair cells in sharks.  J Comp Neurol. 1981;  201(4) 541-553
  • 29 Cotanche D A. Hair cell regeneration in the avian cochlea.  Ann Otol Rhinol Laryngol. 1997;  106 9-15
  • 30 Cotanche D A. Regeneration of hair cell stereocilia bundles in the chick cochlea following severe acoustic trauma.  Hear Res. 1987;  30 181-196
  • 31 Cruz R M, Lambert P M, Rubel E W. Light microscopic evidence of hair cell regeneration after gen-tamicin toxicity in chick cochlea.  Arch Otolaryngol Head Neck Surg. 1987;  113 1058-1062
  • 32 Cummings S G, Bode H R. Head regeneration and polarity reversal in Hydra attenuata can occur in the absence of DNA synthesis.  Wilhelm Roux Arch Dev Biol. 1984;  194 79-86
  • 33 Danjo Y, Gipson I K. Actin ‘purse string’ filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement.  J Cell Sci. 1998;  111(Pt 22) 3323-3332
  • 34 Del R io-Tsonis, Jung J C, Chiu I M, Tsonis P A. Conservation of fibroblast growth factor function in lens regeneration.  Proc Natl Acad Sci USA. 1997;  94(25) 3701-13 706
  • 35 Desmouliere A, Gabbiani G. In: Clark RAF The Molecular and Cellular Biology of Wound Repair Plenum. New York; 1996: 391-423
  • 36 Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts.  J Cell Biol. 1993;  122(1) 103-111
  • 37 Douglas B S. Conservative management of guillotine amputation of the finger in children.  Aust Paediatr J. 1972;  8(2) 86-89
  • 38 Driesch H. Die organischen Regulationen. Leipzig; 1901
  • 39 Endl I, Lohmann J U, Bosch T C. Head-specific gene expression in Hydra: Complexity of DNA-protein interactions at the promoter of ks1 is inverselty correlated to head activation potential 1999
  • 40 Farbman A I. Cell Biology of Olfaction. New York; Cambridge University Press 1992
  • 41 Feghali J G, Lefebvre P P, Staecker H, Kopke R, Frenz D A, Malgrange B, Liu W, Moonen G, Ruben R J, van de Water T R. Mammalian auditory hair cell regeneration/repair and protection: a review and future directions.  Ear Nose Throat J. 1998;  77(4) 276, 280, 282-285
  • 42 Ferchault de Réaumur R-A. Sur les diverses reproductions qui se font dans les Ecrevisse, les Omars, les Crabes, etc. et entr’autres sur celles de leurs Jambes et de leurs Ecailles.  Mem Acad Roy Sci. 1712;  223-245
  • 43 Ferretti P. Re-examining jaw regeneration in urodeles: what have we learnt?.  Int J Dev Biol. 1996;  40(4) 807-811
  • 44 Forge A, Li L, Corwin J T, Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear.  Science. 1993;  259(5101) 1616-1619
  • 45 Forge A, Li L, Nevill G. Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs.  J Comp Neurol. 1998;  397(1) 69-88
  • 46 Francavilla A, Ove P, Polimeno L, Coetzee M, Makowka L, Barone M, van Thiel D H, Starzl T E. Regulation of liver size and regeneration: importance in liver transplantation.  Transplant Proc. 1988;  20(1 Suppl 1) 494-497
  • 47 Gardiner D M, Carlson M R, Roy S. Towards a functional analysis of limb regeneration. Review.  Semin Cell Dev Biol. 1999;  10(4) 385-93
  • 48 Ghosh S, Thorogood P, Ferretti P. Regeneration of lower and upper jaws in urodeles is differentially affected by retinoic acid.  Int J Dev Biol. 1996;  40(6) 1161-1170
  • 49 Ghosh S, Thorogood P, Ferretti P. Regenerative capability of upper and lower jaws in the newt.  Int J Dev Biol. 1994;  38(3) 479-490
  • 50 Ferretti P, Ghosh S. Expression of regeneration-associated cytoskeletal proteins reveals differences and similarities between regenerating organs.  Dev Dyn. 1997 Nov;  210(3) 288-304
  • 51 Goss R. The natural history (and mystery) of regeneration. In: Dinsmore CE (ed.) A History of Regeneration Research: Milestones in the Evolution of a Science. Cambridge University Press 1991
  • 52 Goss R J, Stagg M W. Regeneration of lower jaws in adult newts.  J Morphol. 102 284-309
  • 53 Goss R J, Stagg M W. Regeneration in lower jaws of newts after excision of the intermandibular region.  J Exp Zool. 137 1-11
  • 54 Goss R J. Problems of antlerogesis.  Clin Orthop. 1970;  69 227-238
  • 55 Graver H T. The polarity of dental lamina in the regenerating salamander jaw.  J Embroyl Exp Morphol. 1973;  30 635-646
  • 56 Grose R. Compendium of Published Wound Healing Studies on Genetically Modified Mice. http://www1.cell.biol.ethz.ch/members/grose/wound transgenic/home. Html. 
  • 57 Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing.  Genes Dev. 1996;  10(2) 165-175
  • 58 Hampe W, Riedel I B, Lintzel J, Bader C O, Franke I, Schaller H C. Ectodomain shedding, translocation and synthesis of SorLA are stimulated by its ligand head activator.  J Cell Sci. 2000;  113 Pt 24 4475-4485
  • 59 Harrison M R. Surgically correctable fetal disease.  Am J Surg. 2000;  180(5) 335-342
  • 60 Heber-Katz E. The regenerating mouse ear.  Semin Cell Dev Biol. 1999;  10(4) 415-419
  • 61 Herzog C, Otto T. Regeneration of olfactory receptor neurons following chemical lesion: time course and enhancement with growth factor administration.  Brain Res. 1999;  849(1-2) 155-161
  • 62 Higgins G M, Anderson R M. Arch Pathol. 1931;  12 186
  • 63 Hubner G, Brauchle M, Smola H, Madlener M, Fassler R, Werner S. Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice.  Cytokine. 1996;  8(7) 548-556
  • 64 Huxley J. Studies in dedifferentiation. II. Dedifferentiation and resorption in Perophora.  Q J Microsc Sci. 1921;  65 643-698
  • 65 Hyuga M, Kodama R, Eguchi G. Basic fibroblast growth factor as one of the essential factors regulating lens transdifferentiation of pigmented epithelial cells.  Int J Dev Biol. 1993;  37 319-326
  • 66 Illingworth C M. Trapped fingers and amputated finger tips in children.  J Pediatr Surg. 1974;  9(6) 853-858
  • 67 Iten L E, Bryant S V. Stages of tail regeneration in the adult newt, Notophtalmus viridescens.  J Exp Zool. 1976;  196 283-292
  • 68 Jangir O P. Journal of Zoological Society of India. 2000 berichtet in www.timesofindia.com/021 000/02hlth1.htm The Times of India 2 October 2000. 
  • 69 Johnstone B, Yoo J U. Autologous mesenchymal progenitor cells in articular cartilage repair.  Clin Orthop. 1999;  Suppl 367 S156-162
  • 70 Jorgensen J M, Mathiesen C. The avian inner ear. Continuous production of hair cells in vestibular sensory organs, but not in the auditory papilla.  Naturwissenschaften. 1988;  75 319-320
  • 71 Kayser S T, Ulrich H, Schaller H C. Involvement of a Gardos-type potassium channel in head activator-induced mitosis of BON cells.  Eur J Cell Biol. 1998;  76(2) 119-124
  • 72 Kelley M W, Talreja D R, Corwin J T. Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice.  J Neurosci. 1995;  15(4) 3013-3026
  • 73 Kelley M W, Xu X M, Wagner M A, Warchol M E, Corwin J T. The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture.  Development. 1993;  119(4) 1041-1053
  • 74 Kil J, Warchol M E, Corwin J T. Cell death, cell proliferation, and estimates of hair cell life spans in the vestibular organs of chicks.  Hear Res. 1997;  14(1-2) 117-126
  • 75 Kodama R, Eguchi G. From lens regeneration in the newt to in vitro transdifferentiation of vertebrate pigmented epithelial cells.  Semin Cell Biol. 1995;  6 143-149
  • 76 Kopke R D, Jackson R L, Li G, Rasmussen M D, Hoffer M E, Frenz D A, Costello M, Schultheiss P, van de Water T R. Growth factor treatment enhances vestibular hair cell renewal and results in improved vestibular function.  Proc Natl Acad Sci USA. 2001;  98(10) 5886-5891
  • 77 Korschelt E. Regeneration und Transplantation. Jena; Gustav Fischer 1907
  • 78 Lange M M. On the regeneration and finer structure of the arms of the cephalopods.  J Exp Zool. 1920;  31 1-57
  • 79 LeClere J. http://herpnet.net/Iowa-Herpetology/amphibians/salamanders/eastern newt.html. 2001
  • 80 Lefebvre P P, Malgrange B, Staecker H, Moonen G, van de Water T R. Retinoic acid stimulates regeneration of mammalian auditory hair cells.  Science. 1993;  260(5108) 692-695
  • 81 Lenhoff S G, Lenhoff H M. Hydra and the birth of experimental biology, 1744: Abraham Trembley’s Memoirs concerning the natural history of a type of freshwater polyp with arms shaped like horns. Pacific Grove, California; Boxwood Press 1986
  • 82 Li L, Forge A. Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula.  Int J Dev Neurosci. 1997;  15(4-5) 433-446
  • 83 Li S, Chen B P, Azuma N, Hu Y L, Wu S Z, Sumpio B E, Shyy J Y, Chien S. Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress.  J Clin Invest. 1999;  103(8) 1141-1150
  • 84 Lohmann J U, Bosch T C. The novel peptide HEADY specifies apical fate in a simple radially symmetric metazoan.  Genes Dev. 2000;  14(21) 2771-2777
  • 85 Löwenheim H, Furness D N, Kil J, Zinn C, Gultig K, Fero M L, Frost D, Gummer A W, Roberts J M, Rubel E W, Hackney C M, Zenner H P. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti.  Proc Natl Acad Sci USA. 1999;  96(7) 4084-4088
  • 86 Löwenheim H, Kil J, Gultig K, Zenner H P. Determination of hair cell degeneration and hair cell death in neomycin treated cultures of the neonatal rat cochlea.  Hear Res. 1999;  128(1-2) 16-26
  • 87 Löwenheim H. Hair cell regeneration in the inner ear of birds and mammals.  HNO. 1995;  43(5) 269-270
  • 88 Löwenheim H. Regenerative Biology of Hearing: Taking the Brakes Off the Cell Cycle Engine.  e-biomed: the journal of regenerative medicine. 2000;  1 21-24
  • 89 Maden M. Retinoids as endogenous components of the regenerating limb and tail.  Wound Repair Regen. 1998;  6(4) 358-365
  • 90 Madlener M, Mauch C, Conca W, Brauchle M, Parks W C, Werner S. Regulation of the expression of stromelysin-2 by growth factors in keratinocytes: implications for normal and impaired wound healing.  Biochem J. 1996;  320(Pt 2) 659-664
  • 91 Martin C, Gonzalez del Pino J. Controversies in the treatment of fingertipp amputations. Conservative versus surgical reconstruction. Review.  Clin Orthop. 1998;  353 63-73
  • 92 Martin P, Lewis J. Actin cables and epidermal movement in embryonic wound healing.  Nature. 1992;  360(6400) 179-183
  • 93 McBrearty B A, Clark L D, Zhang X M, Blankenhorn E P, Heber-Katz E. Genetic analysis of a mammalian wound-healing trait.  Proc Natl Acad Sci USA. 1998;  95(20) 11 792-11 797
  • 94 Michalopoulos G K, DeFrances M C. Liver regeneration.  Science. 1997;  276 60-66
  • 95 Mittnacht S. Control of pRB phosphorylation.  Curr Opin Genet Dev. 1998;  8(1) 21-27
  • 96 Morgan T H. Regeneration. New York; The Macmillan Company 1901
  • 97 Nakayama K, Nakayama K. Cip/Kip cyclin-dependant kinase inhibitors: brakes of the cell cycle engine during development.  BioEssays. 1998;  20 1020-1029
  • 98 Needham A E. Regeneration and wound-healing. New York; John Wiley & Sons, Inc. 1952
  • 99 Newth D R. New (and better?) parts for old.  New Biol. 1958;  26 47-62
  • 100 O’Connell B C, Lillibridge C D, Ambudkar I, Kruse D. Somatic gene transfer to salivary glands.  Ann N Y Acad Sci. 1998;  842 171-180
  • 101 Pallas P S. Miscellanea zoologica, quibus novae imprimis atque abscurae animalium species describuntur et observationibus iconibusque illustrantur. Hagae Conmitum, apud Pterum von Cleef. 1766
  • 102 Pardee A B. A restriction point for control of normal animal cell proliferation.  Proc Natl Acad Sci U S A. 1974;  71(4) 1286-1290
  • 103 Pardee A B. G1 events and regulation of cell proliferation.  Science. 1989;  246(4930) 603-608
  • 104 Parker S B, Eichele G, Zhang P, Rawls A, Sands A T, Bradley A, Olson E N, Harper J W, Elledge S J. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells.  Science. 1995;  267 1024-1027
  • 105 Planas-Silva M D, Weinberg R A. The restriction point and control of cell proliferation.  Curr Opin Cell Biol. 1997;  9(6) 768-772
  • 106 Prockop D J. Marrow stromal cells as stem cells for nonhematopoietic tissues.  Science. 1997;  276 71-74
  • 107 Raff M C. Size control: the regulation of cell numbers in animal development.  Cell. 1996;  86(2) 173-175
  • 108 Raz Y, Kelley M W. Retinoic acid signaling is necessary for the development of the organ of Corti.  Dev Biol. 1999;  213(1) 180-193
  • 109 Reyer R W. Regeneration in the lens in the amphibian eye.  Q Rev Biol. 1954;  29 1-46
  • 110 Rochat A, Kobayashi K, Barrandon Y. Location of stem cells of human hair follicles by clonal analysis.  Cell. 1994;  76(6) 1063-1073
  • 111 Romer J, Bugge T H, Pyke C, Lund L R, Flick M J, Degen J L, Dano K. Impaired wound healing in mice with a disrupted plasminogen gene.  Nat Med. 1996;  2(3) 287-292
  • 112 Ross J F, Liu X, Dynlacht B D. Mechanism of transcriptional repression of E2F by the retinoblastoma tumor suppressor protein.  Mol Cell. 1999;  3(2) 195-205
  • 113 Rostand J. Les Origines de la biologie et l’Abbé Spallanzani. 1951
  • 114 Roy S, Gardiner D M, Bryant S V. Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of Shh.  Dev Biol. 2000;  218(2) 199-205
  • 115 Rubel E W, Dew L A, Roberson D W. Mammalian vestibular hair cell regeneration.  Science. 1995;  267(5198) 701-707
  • 116 Ruben R J. Development of the inner ear of the mouse. A autoradiographic study of terminal mitosis.  Acta Otolaryngol (Stockh). 1967;  [Suppl] 220 1-44
  • 117 Ryals B M, Rubel E W. Hair cell regeneration after acoustic trauma in adult Coturnix Quail.  Science. 1988;  240 1774-1776
  • 118 Saffer L D, Gu R, Corwin J T. An RT-PCR analysis of mRNA for growth factor receptors in damaged and control sensory epithelia of rat utricles.  Hear Res. 1996;  94(1-2) 14-23
  • 119 Sanchez Alvarado A, Newmark P A. The use of planarians to dissect the molecular basis of metazoan regeneration.  Wound Repair and Regen. 1998;  6 413-420
  • 120 Sanchez I, Dynlacht B D. Transcriptional control of the cell cycle.  Curr Opin Cell Biol. 1996;  8(3) 318-324
  • 121 Schaller H C, Bodenmüller H. Isolation and amino acid sequence of a morphogenetic peptide from hydra.  Proc Natl Acad Sci USA. 1981;  78 7000-7004
  • 122 Schaller H C, Hermans-Borgmeyer I, Hoffmeister S AH. Neuronal control of development in hydra.  Int J Dev Biol. 1996;  40 339-344
  • 123 Schaller H C, Hoffmeister S A, Dubel S. Role of the neuropeptide head activator for growth and development in hydra and mammals.  Development. 1989;  107 Suppl 99-107
  • 124 Schaller H C, Schilling E, Theilmann L, Bodenmuller H, Sachsenheimer W J. Elevated levels of head activator in human brain tumors and in serum of patients with brain and other neurally derived tumors.  Neurooncol. 1988;  6(3) 251-258
  • 125 Shapiro F, Koide S, Glimcher M J. Cell Origin and differentiation in the Repair of Full-Thickness Defects of Articular Cartilage.  J Bone Joint Surg. 1993;  75A 532
  • 126 Skarsgard E D, Harrison M R. Congenital diaphragmatic hernia: the surgeon’s perspective.  Pediatr Rev. 1999;  20(10) e71-78
  • 127 Sobkowicz H M, August B K, Slapnick S M. Epithelial repair following mechanical injury of the developing organ of Corti in culture: an electronmicroscopic and autoradiographic study.  Exp Neurol. 1992;  115(1) 44-49
  • 128 Sobkowicz H M, August B K, Slapnick S M. Post-traumatic survival and recovery of the auditory sensory cells in culture.  Acta Otolaryngol. 1996;  116(2) 257-262
  • 129 Sobkowicz H M, August B K, Slapnick S M. Cellular interactions as a response to injury in the organ of Corti in culture.  Int J Dev Neurosci. 1997;  15(4-5) 463-485
  • 130 Soos T J, Park M, Kiyokawa H, Koff A. Regulation of the cell cycle by CDK inhibitors. Cell Cycle Control, Results and Problems in Cell Differentiation. Hennig W, Nover L, Scheer U (eds.) Berlin, Heidelberg, New York; Springer 1998 22: 111-128
  • 131 Spallanzani L. Prodromo di un opera da imprimersi sopra la riproduzioni animali, 1768; M. trans. London; T. Becket & de Hondt 1769
  • 132 Staecker H, Lefebvre P P, Malgrange B, Moonen G, van de Water T R. Technical comments: Regeneration and mammalian auditory hair cells.  Science. 1995;  267(5198) 709-711
  • 133 Staecker H, van de Water T R. Factors controlling hair-cell regeneration/repair in the inner ear.  Curr Opin Neurobiol. 1998;  8(4) 480-487
  • 134 Starzl T E, Fung J, Tzakis A, Todo S, Demetris A J, Marino I R, Doyle H, Zeevi A, Warty V, Michaels M. et al . Baboon-to-human liver transplantation.  Lancet. 1993;  341(8837) 65-71
  • 135 Stein G H, Namba M, Corsaro C M. Relationship of finite proliferative lifespan, senescence, and quiescence in human cells.  J Cell Physiol. 1985;  122(3) 343-349
  • 136 Stelnicki E J, Lee S, Hoffman W, Lopoo J, Foster R, Harrison M R, Longaker M T. A long-term, controlled-outcome analysis of in utero versus neonatal cleft lip repair using an ovine model.  Plast Reconstr Surg. 1999;  104(3) 607-615
  • 137 Stone J S, Oesterle E C, Rubel E W. Recent insight into regeneration of auditory and vestibular hair cells.  Curr Op Neurol. 1998;  11 17-24
  • 138 Stone L S. Further experimental studies of the development of lateral-line sense organs in amphibians ob-served in living preparations.  Compr Neurol. 1937;  68 83-115
  • 139 Sugiyama T, Wanek N. Genetic analysis of developmental mechanisms in hydra. Enhancement of regeneration in a regeneration-deficient mutant strain by the elimination of the interstitial cell lineage. Dev.  Biol. 1993;  160 64-72
  • 140 Sulik K K, Cook C S, Webster W S. Teratogens and craniofacial malformations: relationships to cell death.  Development. 1988;  103 Suppl 213-231
  • 141 Takahashi S, Nakamura S, Suzuki R, Domon T, Yamamoto T, Wakita M. Changing myoepithelial cell distribution during regeneration of rat parotid glands.  Int J Exp Pathol. 1999;  80(5) 283-290
  • 142 Takahashi S, Schoch E, Walker N I. Origin of acinar cell regeneration after atrophy of the rat parotid induced by duct obstruction.  Int J Exp Pathol. 1998;  79(5) 293-301
  • 143 Torok M A, Gardiner D M, Shubin N H, Bryant S V. Expression of HoxD genes in developing and regenerating axolotl limbs.  Dev Biol. 1998;  200(2) 225-233
  • 144 Trembley A. (deutsche Übersetzung) Abhandlungen zur Geschichte einer Polypenart des süssen Wassers. Quedlinburg; Friedrich Joseph Ernst 1791
  • 145 Trembley A. Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce. Jean & Herman Verbeek 1744
  • 146 Trengove N J, Stacey M C, MacAuley S, Bennett N, Gibson J, Burslem F, Murphy G, Schultz G. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors.  Wound Repair Regen. 1999;  7(6) 442-452
  • 147 Tsonis P A. Regeneration in Vertebrates.  Developmental Biology. 2000;  221 273-284
  • 148 Tsuboi R, Sato C, Kurita Y, Ron D, Rubin J S, Ogawa H. Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes.  J Invest Dermatol. 1993;  101(1) 49-53
  • 149 Vallette M. Regeneration du museau et territoires de regeneration chez les urodeles.  Bull Biol Fr Belg. 63 95-148
  • 150 Vidal P, Dickson M G. Regeneration of the distal phalanx. A case report.  J Hand Surg [Br]. 1993;  18(2) 230-233
  • 151 Warchol M E, Lambert P R, Goldstein B J, Forge A, Corwin J T. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans.  Science. 1993;  259 1619-1621
  • 152 Weinberg R A. The retinoblastoma protein and cell cycle control.  Cell. 1995;  81(3) 323-330
  • 153 Werner S, Peters K G, Longaker M T, Fuller-Pace F, Banda M J, Williams L T. Large induction of keratinocyte growth factor expression in the dermis during wound healing.  Proc Natl Acad Sci U S A. 1992;  89(15) 6896-6900
  • 154 Werner S, Smola H, Liao X, Longaker M T, Krieg T, Hofschneider P H, Williams L T. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds.  Science. 1994;  266(5186) 819-822
  • 155 Werner S. Keratinocyte growth factor: a unique player in epithelial repair processes.  Cytokine Growth Factor Rev. 1998;  9(2) 153-165
  • 156 Widmann J J, Fahimi H D. The regenerative response of Kupffer cells and endothelial cells after partial hepatectomy. In: Lesch R, Reutter W (eds.) Liver regeneration after experimental injury. New York; Stratton Intercontinental Medical Book Corp 1975: 89-98
  • 157 Yamada K M, Clark R AF. In: Clark RAF The Molecular and Cellular Biology of Wound Repair Plenum. New York; 1996: 3-50
  • 158 Yang E V, Gardiner D M, Carlson M R, Nugas C A, Bryant S V. Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration.  Dev Dyn. 1999;  216(1) 2-9
  • 159 Zetterberg A, Larsson O, Wiman K G. What is the restriction point?.  Curr Opin Cell Biol. 1995;  7(6) 835-842
  • 160 Zheng J L, Frantz G, Lewis A K, Sliwkowski M, Gao W Q. Heregulin enhances regenerative proliferation in postnatal rat utricular sensory epithelium after ototoxic damage.  J Neurocytol. 1999;  28(10-11) 901-912
  • 161 Zheng J L, Gao W Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears.  Nat Neurosci. 2000;  3(6) 580-586
  • 162 Zheng J L, Helbig C, Gao W Q. Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures.  J Neurosci. 1997;  17(1) 216-226
  • 163 Zheng J L, Keller G, Gao W Q. Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery.  J Neurosci. 1999;  19(6) 2161-2170
  • 164 Wolpert L. Positional information and pattern formation in development.  Dev Genet. 1994;  15(6) 485-490
  • 165 De Robertis E M, Sasay Y. A common plan for dorsoventral patterning in Bilateria.  Nature. 1996 Mar 7;  380(6569) 37-40
  • 166 Weiziger R, Salgado L M, David C N, Bosch T C. Ks1, an epithelial cell-specific gene, responds to early signals of head formation in Hydra.  Development. 1994 Sep;  120(9) 2511-2517
  • 167 Winnikes M, Schaller H C, Sachsenheimer W. Head activator as a potential serum marker for brain tumour analysis.  Eur J Cancer. 1992;  28(2 - 3) 421-424
  • 168 Tsonis P A, Del Rio-Tsonis K. Spontaneous neoplasms in amphibia.  Tumour Biol. 1988;  9(4) 221-224
  • 169 Eguchi G, Watanabe K. Elicitation of lens formation from the „ventral iris” epithelium of the newt by a carcinogen, N-methyl-N'-nitro-Nnitrosoguanidine.  J Embryol Exp Morphol. 1973 Aug;  30(1) 63-71
  • 170 Tsonis P A. Effects of carcinogens on regenerating and non-regenrating limbs in amphibia.  Anticancer Res. 1983 May - Jun;  3(3) 195-202
  • 171 Prehn R T. Immunosurveillance, regeneration and oncogenesis.  Prog Exp Tumor Res. 1971;  14 1-24
  • 172 Schneider J W, Gu W, Zhu L, Mahdavi V, Nadal-Ginard B. Reversal of terminal differentiation mediated by p107 in Rb-/-muscle cells.  Science. 1994 Jun 3;  264(5164) 1467-1471
  • 173 Fero M L, Rivkin M, Tasch M, Porter P, Carow C E, Firpo E, Polyak K, Tsai L H, Broudy V, Perlmutter R M, Kaushansky K, Roberts J M. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice.  Cell. 1996 May 31;  85(5) 733-744
  • 174 Gustafsson H, Franzen L, Henriksson R. Regeneration of parotid acinar cells after high radiation doses. A morphological study in rat.  Acta Oncol. 1995;  34(2) 193-197
  • 175 Gosh S, Thorogood P, Ferretti P. Regeneration of lower and upper jaws in urodeles is differentially affected by retinoic acid.  Int J Dev Biol. 1996 Dec;  40(6) 1161-1170

Dr. med. H. Löwenheim

Universitäts-Hals-Nasen-Ohren-Klinik

Silcherstrasse 5 · 72076 Tübingen ·

Email: hubert.loewenheim@uni-tuebingen.de

    >