Subscribe to RSS
DOI: 10.1055/s-2002-23541
The First Efficient Synthesis and Optical Resolution of Monosubstituted Cyclotribenzylenes
Publication History
Publication Date:
02 April 2002 (online)
Abstract
A new and high yielding synthetic route to monosubstituted cyclotribenzylenes 6 via the cyclocondensation of benzene with a suitably monosubstituted diol 20, obtained from ozonolysis of the corresponding dibenzosuberene precursor 19, was developed for the first time! The dibenzosuberene itself could be readily prepared in large quantities from inexpensive starting materials in five steps. Using this synthetic approach, a mono bromosubstituted cyclotribenzylene 12a was synthesized on large scale. Another four monosubstituted cyclotribenzylenes 21-24 were also prepared either via bromine/lithium exchange followed by subsequent quenching with external electrophiles or a copper mediated reaction with cyanide. These molecules adopt a rigid crown conformation as shown by X-ray analysis and temperature dependent NMR studies. The barrier to inversion is quite high, requiring temperatures well above 120 °C before inversion takes place. Futhermore, such monosubstituted cyclotribenzylenes are planar chiral and after optical resolution, using HPLC, we were able to obtain the first planar chiral C1-symmetric cyclotribenzylenes in form of the optically pure enantiomers of 12a, the CD spectra of which are exact mirror images over the entire spectral range.
Key words
carbocycles - cyclophanes - CD spectroscopy - planar chirality
-
2a
Steed JW.Atwood JL. In Supramolecular Chemistry Wiley; Chichester: 2000. -
2b
Lehn J.-M. In Supramolecular Chemistry, Concepts and Perspectives VCH; Weinheim: 1995. -
2c
Vögtle F. In Supramolecular Chemistry Wiley & Sons; Chichester: 1991. -
3a
Sato T.Uno K. J. Chem. Soc., Chem. Commun. 1972, 579 -
3b
Sato T.Uno K. J. Chem. Soc., Perkin Trans. 1 1973, 895 - 4 For a general review on cyclophanes see:
Vögtle F. In Cyclophane Chemistry Wiley & Sons; Chichester: 1993. - 5
Diedrich F. Angew. Chem., Int. Ed. Engl. 1988, 27: 362 - 6 For a comprehensive review on the synthesis and properties of cyclotriveratrylenes see:
Collet A. Tetrahedron 1987, 43: 5725 - 7 For an extensive review see:
Collet A.Dutasta J.-P.Lozach B.Canceil J. Top. Curr. Chem. 1993, 165: 103 - 8
Sato T.Akima T.Uno K. J. Chem. Soc., Perkin Trans. 1 1973, 891 - 9
Yamato T.Sakaue N. J. Chem. Res. (M) 1997, 12: 2614 - 10
Tellenbröker J.Kuck D. Angew. Chem. Int. Ed. 1999, 38: 919 - For further synthetic approaches to unsubstituted cyclotribenzylene 1 see:
-
11a
Lee WY.Sim W.Choi KD. J. Chem. Soc., Perkin Trans. 1 1992, 881 -
11b
Kodomari M.Taguchi S. J. Chem. Res. (S) 1996, 240 -
11c
Yamamoto T.Sakaue N.Furusawa T.Tashiro M.Surya Prakash GK.Olah GA. J. Chem. Res. (S) 1991, 242 -
11d
Canceill J.Collet A.Gottarelli G. J. Am. Chem. Soc. 1984, 106: 5997 -
11e
Canceill J.Collet A. J. Chem. Soc., Chem. Commun. 1983, 1145 - For other similar low yielding multi-step approaches to diol 4 see also:
-
12a
Lee WY.Park CH.Kim YD. J. Org. Chem. 1992, 57: 4074 -
12b
Bergmann ED.Pelchowicz Z. J. Am. Chem. Soc. 1953, 75: 4281 - 13
Platzek J.Snatzke G. Tetrahedron 1987, 43: 4947 - 14 A related approach was used by Renaud and coworkers. However, their route requires four steps and was rather low yielding with 58% yield at best:
Renaud RN.Layton RB.Fraser RR. Can. J. Chem. 1973, 51: 3380 - 15 This is in accordance with other reports in the literature; see e.g. for a double nitration of dibenzosuberenone:
Campbell TW.Ginsig R.Schmid H. Helv. Chim. Acta 1953, 36: 1489 - 16
Gringauz A. In Medicinal Chemistry Wiley-VCH; New York: 1997. -
17a
Thompson WJ.Anderson S.Britcher SF.Lyle TA.Thies JE. J. Med. Chem. 1990, 33: 789 -
17b
Weiler-Feilchenfeld H.Solomonovici A. J. Chem. Soc. B 1971, 869 -
17c
Jung ME.Miller SJ. J. Am. Chem. Soc. 1981, 103: 1984 -
17d
Inoue J.Cui Y.-S.Rodriguez L.Chen Z.Kador PF. Eur. J. Med. Chem. Chim. Ther. 1999, 34: 399 - A regioisomer of this compound had been prepared earlier by Renaud in a very low yielding 12 step synthesis:
-
18a
Fraser RR.Renaud RN. Can. J. Chem. 1971, 49: 746 -
18b
Renaud RN.Bovenkamp JW.Fraser RR.Capoor R. Can. J. Chem. 1977, 55: 2642 -
19a
Engelhardt EL.Zell HC.Saari WS.Christy ME.Colton CD.Stone CA.Stavorski JM.Wenger HC.Ludden CT. J. Med. Chem. 1965, 8: 829 -
19b
Remy DC.Rittle KE.Hunt CA.Anderson PS.Arison BH.Engelhardt EL.Hirschmann R.Clineschmidt BV.Lotti VJ.Bunting PR.Ballentine RJ.Papp NL.Flataker L.Witoslawski JJ.Stone CA. J. Med. Chem. 1977, 20: 1013 -
19c
Davis DA.de Paulis T.Janowsky A.Smith HE. J. Med. Chem. 1990, 33: 809 - 20
Mikotic-Mihun Z.Dogan J.Litvic M.Cepanec I.Karminski-Zamola GM. Synth. Commun. 1998, 28: 2191 - 21
Manning C.McClory MR.McCullough JJ. J. Org. Chem. 1981, 46: 919 -
22a
Slates HL.Wendler NL. J. Med. Chem. 1965, 8: 886 -
22b
Looker JJ. J. Org. Chem. 1966, 31: 3599 - 23
Wendler NL,Taub D, andHoffsommer RD. inventors; U. S. Patent 2,247,272. In analogy to a patented procedure: - For various reductive work-up procedures after ozonolysis see:
-
25a
Thiem J. In Houben-Weyl: Methoden der Organischen Chemie Vol. VI/1a: Thieme; Stuttgart: 1980. p.853 -
25b For the use of lithium boronate see also:
Brown HC.Narasimhan S.Choi YM. J. Org. Chem. 1982, 47: 4702 - 26
Flippin LA.Gallagher DW.Jalali-Araghi K. J. Org. Chem. 1989, 54: 1430 -
27a
Canceill J.Collet A.Gotarelli G.Plamieri P. J. Am. Chem. Soc. 1987, 109: 6454 -
27b
Canceill J.Collet A. New J. Chem. 1986, 10: 17 -
27c
Canceill J.Lacombe L.Collet A. J. Am. Chem. Soc. 1985, 107: 6993 -
27d
Canceill J.Collet A.Gabard J.Gotarelli G.Spada GP. J. Am. Chem. Soc. 1985, 107: 1299 -
27e
Collet A. J. Am. Chem. Soc. 1981, 103: 5912
References
Former address: Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany.
24LiAlH4 even in equimolar amounts at low temperatures caused substantial debromination and gave only 23%, at most, of the desired bromosubstituted diol 20. Other reducing agents such as sodium boronate or lithium boronate only gave complex product mixtures in which the desired diol 20 was only present in small amounts (according to TLC and GC-MS analysis), no matter which reaction conditions we tried (e.g. by variation of temperature and solvent, respectively). Borane in THF did not react at all.