Exp Clin Endocrinol Diabetes 2002; 110(2): 67-73
DOI: 10.1055/s-2002-23488
Articles

© Johann Ambrosius Barth

Transport of insulin-like growth factor-I across endothelial cell monolayers and its binding to the subendothelial matrix

J. Grulich-Henn 1 , J. Ritter 1 , S. Mesewinkel 1 , U. Heinrich 1 , M. Bettendorf 1 , K. T. Preissner 2
  • 1 Department of Pediatrics, University of Heidelberg, Germany
  • 2 Institute for Biochemistry, University of Giessen, Germany
Further Information

Publication History

received 27 October 2000 first decision 09 February 2001

accepted 23 August 2001

Publication Date:
27 March 2002 (online)

Summary

Cultured human umbilical vein endothelial cells (HUVEC) were used as a model to study transendothelial IGF-I transport, and its deposition into the extracellular matrix (ECM). Specific binding of 125I-IGF-I to HUVEC monolayers was demonstrated, which was inhibited by aIR-3, a specific antibody directed against the IGF-I receptor. ECM-associated 125I-IGF-I was approximately 10% of cell-bound IGF-I at 22 °C, and increased 4.5-fold at 37 °C, indicating that endothelial metabolism is required for the transport. However, neither monensin and cytochalasin B, both of which block endocytosis, nor aIR-3 did inhibit transport of 125I-IGF-I into the ECM. In order to characterize IGF-I binding to the subendothelial ECM, HUVEC were removed nonenzymatically by treatment with Triton X-100 and ammonia. Specific, saturable binding of 125I-IGF-I to the isolated ECM was observed, which was protease-sensitive. Antibodies directed against vitronectin inhibited IGF-I binding to the matrix by 35%, while antibodies directed against other ECM proteins had no significant influence on IGF-I binding. Using radioimmunoassays the IGF binding protein-2 was detected in the ECM, while IGFBP-1 and IGFBP-3 were below the detection limits. In order to evaluate functional aspects of IGF-I binding to the matrix, HUVEC were incubated under serum-free conditions in the absence and presence of IGF-I. Under serum-free conditions 48% of cells rounded up and started to detach after 2 hours incubation, while only 23% of the cells started to detach in the presence of IGF-I. These data indicate that IGF-I is transported via a paracelluar route across endothelial cells, and becomes bound to the subendothelial ECM. Vitronection seems to be involved in binding of IGF-I to the ECM. ECM-associated IGF-I might play a role in endothelial cell survival and stability.

References

  • 1 Banskota N K, Carpentier J L, King G L. Processing and release of insulin and insulin-like growth factor I by macro- and microvascular endothelial cells.  Endocrinology. 1986;  119 1904-1913
  • 2 Bar R S, Boes M. Distinct receptors for IGF-I, IGF-II, and insulin are present on bovine capillary endothelial cells and large vessel endothelial cells.  Biochem Biophys Res Commun. 1984;  124 203-209
  • 3 Bar R S, Booth B A, Boes M, Dake B L. Insulin-like growth factor-binding proteins from vascular endothelial cells: purification, characterization, and intrinsic biological activities.  Endocrinology. 1989;  125 1910-1920
  • 4 Bar R S, Boes M, Booth B A, Dake B L, Moser D R, Erondu N E. Vasular endothelium, IGFs and IGF binding proteins. In: Baxter RC, Gluckman PD, Rosenfeld RG (eds) The insulin-like growth factors and their regulatory proteins. Elsevier Science BV, Amsterdam 1994: 237-244
  • 5 Bar R S, Dake B L, Stueck S. Stimulation of proteoglycans by IGF-I and -II in microvessel and large vessel endothelial cells.  Am J Physiol. 1987a;  253 E21-E27
  • 6 Bar R S, Clemmons D R, Boes M, Busby W H, Booth B A, Dake B L, Sandra A. Transcapillary permeability and subendothelial distribution of endothelial and amniotic fluid insulin-like growth factor binding proteins in rat heart.  Endocrinology. 1990;  127 1078-1086
  • 7 Bar R S, Goldsmith J C, Rechler M M, Peacock M L, Nissley S P. Interactions of multiplication-stimulating activity with bovine endothelium: comparative studies in primary, passaged, and cloned cultures from the pulmonary and systemic circulations.  Endocrinology. 1982;  110 990-996
  • 8 Bar R S, Harrison L C, Baxter R C, Boes M, Dake B L, Booth B, Cox A. Production of IGF-binding proteins by vascular endothelial cells.  Biochem Biophys Res Commun. 1987b;  148 734-739
  • 9 Bar R S, Siddle K, Dolash S, Boes M, Dake B. Actions of insulin and insulinlike growth factors I and II in cultured microvessel endothelial cells from bovine adipose tissue.  Metabolism. 1988;  37 714-720
  • 10 Bastian S EP, Walton P E, Belford D A. Paracellular transport of insulin-like growth factor-I (IGF-I) across human umbilical vein endothelial cell monolayers.  J Cell Physiol. 1997;  170 290-298
  • 11 Boes M, Booth B A, Sandra A, Dake B L, Bar R S. Insulin-like growth factor binding protein (IGFBP) 4 accounts for the connective tissue distribution of endothelial cells IGFBPs perfused through the isolated heart.  Endocrinology. 1992;  131 327-330
  • 12 Booth B A, Bar R S, Boes M, Dake B L, Bayne M, Cascieri M. Intrinsic bioactivity of insulin-like growth factor-binding proteins from vascular endothelial cells.  Endocrinology. 1990;  127 2630-2638
  • 13 Booth B A, Boes M, Andress D L, Dake B L, Kiefer M C, Maack C, Linhardt R J, Bar K, Caldwell E E, Weiler J, Bar R S. IGFBP-3 and IGFBP-5 association with endothelial cells: role of C-terminal heparin binding domain.  Growth Reg. 1995;  5 1-17
  • 14 Campell P G, Novak J F, Yanosick T B, McMaster J H. Involvement of the plasmin system in dissociation of the insulin-like growth factor-binding protein complex.  Endocrinology. 1992;  130 1401-1412
  • 15 Conti F G, Elliot S J, Striker L J, Striker G E. Binding of insulin-like growth factor-I by glomerular endothelial and epithelial cells: further evidence for IGF-I action in the renal glomerulus.  Biochem Biophys Res Commun. 1989;  163 952-958
  • 16 Delafontaine P, Bernstein K E, Alexander R W. Insulin-like growth factor-I gene expression in vascular cells.  Hypertension. 1991;  17 693-699
  • 17 Doerr M E, Jones J L. The role of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells.  J Biol Chem. 1996;  271 2443-2447
  • 18 Erondu N E, Dake B L, Moser D R, Lin M, Boes M, Bar R S. Regulation of endothelial IGFBP-3 synthesis and secretion by IGF-I and TGF-beta.  Growth Reg. 1996;  6 1-9
  • 19 Fiorelli G, Orlando C, Benvenuti S, Franceschelli F, Bianchi S, Pioli P, Tanini A, Serio M, Bartucci F, Brandi M L. Characterization, regulation, and function of specific cell membrane receptors for insulin-like growth factor I on bone endothelial cells.  J Bone Miner Res. 1994;  9 329-337
  • 20 Fowlkes J L, Enghild J J, Suzuki K, Nagase H. Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures.  J Biol Chem. 1994a;  269 25742-25746
  • 21 Fowlkes J L, Suzuki K, Nagase H, Thrailkill K M. Proteolysis of insulin-like growth factor binding protein-3 during rat pregnancy: a role for matrix metalloproteinases.  Endocrinology. 1994b;  135 2810-2813
  • 22 Geary E S, Rosenfeld R G, Hoffman A R. Insulin-like growth factor-I is internalized after binding to the type I insulin-like growth factor receptor.  Horm metabol Res. 1989;  21 1-3
  • 23 Grant M, Jerdan J, Merimee T J. Insulin-like growth factor-I modulates endothelial cell chemotaxis.  J Clin Endocrinol Metab. 1987;  65 370-371
  • 24 Grulich-Henn J, Weksler B B, Watanabe K, Jaffe E A. Wheat germ agglutinin inhibits thrombin-induced rises in cytosolic free calcium and prostacyclin synthesis by human umbilical vein endothelial cells.  J Cell Physiol. 1988;  137 553-558
  • 25 Grulich-Henn J, Müller-Berghaus G, Preissner K T. The influence of growth substratum and cell activation on the deposition of plasminogen activator inhibitor-1 synthesis.  Fibrinolysis. 1992;  6 131-137
  • 26 Hansson H A, Jennische E, Skottner A. Regenerating endothelial cells express insulin-like growth factor-I immunoreactivity after arterial injury.  Cell Tissue Res. 1987;  250 499-505
  • 27 Jialal I, Crettaz M, Hachiya H L, Kahn C R, Moses A C, Buzney S M, King G L. Characterization of the receptors for insulin and the insulin-like growth factors on micro- and macrovascular tissues.  Endocrinology. 1985;  117 1222-1229
  • 28 King G L, Goodman A D, Buzney S, Moses A, Kahn C R. Receptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta.  J Clin Invest. 1985a;  75 1028-1036
  • 29 King G L, Johnson S. Receptor-mediated transport of insulin across endothelial cells.  Science . 1985b;  27 583-1586
  • 30 LeRoith D, Adamo M, Werner H, Roberts C T. Molecular and cellular biology of the insulin-like growth factors.  In: Weintraub BD (ed) Molecular endocrinolgy: basic concepts and clinical correlations. Raven Press Ltd, New York 1995: 181-193
  • 31 Moser D R, Lowe W L, Dake B L, Booth B A, Clemmons D R, Bar R S. Endothelial cells express insulin-like growth factor-binding proteins 2 to 6.  Mol Endocrinol. 1992;  6 1805-1814
  • 32 Ohashi H, Rosen K M, Smith F E, Villa-Komaroff L, Nayak R C, King G L. Characterization of type I IGF receptor and IGF-I nRNA expression in cultured human and bovine glomerular cells.  Reg Pept. 1993;  48 9-20
  • 33 Preissner K T, Anders E, Grulich-Henn J, Müller-Berghaus G. Attachment of cultured human endothelial cells is promoted by specific association with S protein (vitronectin) as well as with the ternary S protein-thrombin-antithrombin III complex.  Blood. 1988;  71 1581-1589
  • 34 Preissner K T, Grulich-Henn J, Ehrlich H J, Declerck P, Justus C, Collen D, Pannekoek H, Müller-Berghaus G. Structural requirements for the extracellular interaction of plasminogen activator inhibitor 1 with endothelial cell matrix-associated vitronectin.  J Biol Chem. 1990;  265 18490-18498
  • 35 Rechler M M. Non-receptor-binding proteins for insulin-like growth factors and other cytokines: modulators of peptide action. In: Weintraub BD (ed) Molecular endocrinology: basic concepts and clinical correlations Raven Press Ltd, New York 1995: 155-180
  • 36 Rosenfeld R G, Pham H, Keller B T, Borchardt R T, Pardridge W M. Demonstration and structural comparison of receptors for insulin-like growth factor-I and -II (IGF-I and -II) in brain and blood-brain barrier.  Biochem Biophys Res Commun. 1987;  149 159-166
  • 37 Taylor W R, Nerem R M, Alexander R W. Polarized secretion of IGF-I and IGF-I binding protein activity by cultured aortic endothelial cells.  J Cell Physiol. 1993;  154 139-142
  • 38 Tsukahara H, Gordienko D V, Tönshoff B, Gelato M C, Goligorsky M S. Direct demonstration of insulin-like growth factor-I-induced nitric oxide production by endothelial cells.  Kidney Int. 1994;  45 598-604
  • 39 Upton Z, Webb H, Hale K, Yandell C A, McMurty J P, Francis G L, Ballard F J. Identification of vitronectin as a novel insulin-like growth factor-II binding protein.  Endocrinology. 1999;  140 2928-2931
  • 40 Wu H Y, Jeng Y Y, Yue C J, Chyu K Y, Hsueh W A, Chan T M. Endothelial-dependent vascular effects of insulin and insulin-like growth factor I in the perfused rat mesenteric artery and aortic ring.  Diabetes. 1994;  43 1027-1032

Dr. J. Grulich-Henn

University Children's Hospital Heidelberg

Im Neuenheimer Feld 150

D-69120 Heidelberg

Germany

Phone: + 49-6221-562311

Email: Juergen_Grulich-Henn@med.uni-heidelberg.de