Semin Musculoskelet Radiol 2002; 06(1): 005-018
DOI: 10.1055/s-2002-23160
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Technical Considerations: CT and MR Imaging in the Postoperative Orthopedic Patient

Lawrence M. White1 , Kenneth A. Buckwalter2
  • 1Department of Medical Imaging, Division of Musculoskeletal Imaging, University of Toronto, Mount Sinai Hospital and the University Health Network, Toronto, Ontario, Canada
  • 2Section of Musculoskeletal Imaging, Department of Radiology, Indiana University Hospital, Indianapolis, IN
Further Information

Publication History

Publication Date:
26 March 2002 (online)

ABSTRACT

Cross-sectional imaging utilizing computed tomography (CT) and magnetic resonance (MR) imaging have become routine components in the imaging assessment of patients with musculoskeletal disease. Unfortunately, in the setting of a postoperative orthopedic patient with associated orthopedic metallic instrumentation, these imaging techniques are prone to artifacts resulting in image quality degradation. An understanding of the physical basis of such metal-related artifacts, and their appearance on CT and MR imaging, has led investigators to the implementation of a series of techniques and modifications to imaging protocols to decrease CT and MR imaging artifacts in the vicinity of metallic instrumentation. Utilizing such modified imaging techniques, consistent, improved CT and MR image quality may be achieved in imaging of the postoperative orthopedic patient.

REFERENCES

  • 1 Shellock F G, Morisoli S, Kanal E. MR procedures and biomedical implants, materials, and devices: 1993 update.  Radiology . 1993;  189 587-559
  • 2 Wang J C, Yu W D, Sandhu H S, Tam V, Delamarter R B. A comparison of magnetic resonance and computed tomographic image quality after the implantation of tantalum and titanium spinal instrumentation.  Spine . 1988;  23 1684-1688
  • 3 Ebraheim N A, Coombs R, Rusin J J, Jackson W T. Reduction of post-operative CT artifacts of pelvic fractures by use of titanium implants.  Orthopedics . 1990;  13 1357-1358
  • 4 Haramati N, Staron R B, Mazel-Sperling K, Freeman K, Nickoloff E L, Barax C, Feldman F. CT scans through metal scanning technique versus hardware composition.  Comput Med Imag Graph . 1994;  18 429-434
  • 5 Brown J H, Lustrin E S, Lev M H, Ogilvy C S, Taveras J M. Reduction of aneurysm clip artifacts on CT angiograms: a technical note.  Am J Neuroradiol . 1999;  20 694-696
  • 6 Robertson D D, Weiss P J, Fishman E K, Magid D, Walker P S. Evaluation of CT techniques for reducing artifacts in the presence of metallic orthopedic implants.  J Comput Assist Tomog . 1988;  12 236-241
  • 7 Link T M, Berning W, Scherf S, Joosten U, Joist A, Engelke K, DaldrupLink H E. CT of metal implants: reduction of artifacts using an extended CT scale technique.  J Comput Assist Tomog . 2000;  24 165-172
  • 8 Fishman E K, Magid D, Robertson D D, Brooker A F, Weiss P, Siegelman S S. Metallic hip implants: CT with multiplanar reconstruction.  Radiology . 1986;  160 675-681
  • 9 Hinderling T H, Rüegsegger P, Anliker M, Dietschi C. Computed tomography reconstruction from hollow projections: an application to in vivo evaluation of artificial hip joints.  J Comput Assist Tomog . 1979;  3 52-57
  • 10 Kalender W A, Hebel R, Ebersberger J. Reduction of artifacts caused by metallic implants.  Radiology . 1987;  164 576-577
  • 11 Robertson D D, Yuan J, Wang G, Vannier M W. Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction.  J Comput Assist Tomog . 1997;  21 293-298
  • 12 Wang G, Frei T, Vannier M W. Fast iterative algorithm for metal artifact reduction in X-ray CT.  Acad Radiol . 2000;  7 607-614
  • 13 Zhao S, Robertson D D, Wang G, Whiting B, Bae K T. X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses.  IEEE Trans Med Imag . 2000;  19 1238-1247
  • 14 White L M, Kim J K, Mehta M. Complications of total hip arthroplasty: MR imaging-initial experience.  Radiology . 2000;  215 254-262
  • 15 Tormanen J, Tervonen O, Koivula A, Junita J, Suramo I. Image technique optimization in MR imaging of a titanium alloy joint prosthesis.  J Magn Reson Imag . 1996;  6 805-811
  • 16 Henck C B, Brodner W, Grampp S, Breitenscher M, Thurnher M, Mostbeck G H, Imhof H. The postoperative spine.  Top Magn Reson Imag . 1999;  10 247-264
  • 17 Olsen R V, Munk P L, Lee M J, Janzen D L, MacKay A L, Xiang Q S, Masri B. Metal artifact reduction sequence: early clinical applications.  Radiographics . 2000;  20 699-712
  • 18 Chang S D, Lee M J, Munk P L, Janzen D L, MacKay A, Xiang Q S. MRI of spinal hardware: comparison of conventional TI-weighted sequence with a new metal artifact reduction sequence.  Skel Radiol . 2001;  20 213-218
  • 19 Peterslige C A, Lewin J S, Duerk J L, Yoo J U, Ghaneyem A J. Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws.  Am J Roentgenol . 1996;  166 1213-1218
  • 20 Czerny C, Krestan C, Imhof H, Trattnig S. Magnetic resonance imaging of the postoperative hip.  Top Magn Reson Imag . 1999;  10 214-220
  • 21 Frazzini V I, Kagetsu N J, Johnson C E, Destian S. Internally stabilized spine: optimal choice of frequency-encoding gradient direction during MR imaging minimizes susceptibility artifact from titanium vertebral body screws.  Radiology . 1997;  204 268-272
  • 22 Tartaglino L M, Flanders A E, Vitinski S, Friedman D P. Metallic artifacts on MR images of the postoperative spine: reduction with fast spin-echo techniques.  Radiology . 1994;  190 565-569
  • 23 Eustace S, Jara H, Goldberg R, Fenlon H, Mason M, Melhem E R, Yucel E K. A comparison of conventional spin-echo and turbo spin-echo imaging of soft tissue adjacent to orthopedic hardware.  Am J Roentgenol . 1998;  170 455-458
  • 24 Wendt R E, Wicott M R, Nitz W, Murphy P H, Bryan R N. MR imaging of susceptibility-induced magnetic field inhomogeneities.  Radiology . 1988;  168 837-841
  • 25 Bakker C JG, Bhagwandien R, Moerland M A, Fuderer M. Susceptibility artifacts in 2DFT spin-echo imaging: the cylinder model revisited.  Magn Reson Imag . 1993;  11 539-548
  • 26 Bakker C JG, Bhagwandien R, Moerland M A, Ramos L MP. Simulation of susceptibility artifacts in 2D and 3D Fourier transform spin-echo and gradient-echo magnetic resonant imaging.  Magn Reson Imag . 1994;  12 767-774
  • 27 Mueller P R, Stark D D, Simeone J F. MR-guided aspiration biopsy: needle design and clinical trials.  Radiology . 1986;  161 605-609
  • 28 Suh J S, Jeong E K, Shin K H, Cho J H, Na J B, Kim D H, Han C D. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies.  Am J Roentgenol . 1998;  171 1207-1213
  • 29 Sakurai K, Fujita N, Harada K, Kim S W, Nakanishi K, Kozuka T. Magnetic susceptibility artifact in spin-echo MR imaging of the pituitary gland.  Am J Neuroradiol . 1992;  13 1301-1308
  • 30 Sled J G, Pike G B. Correction for B1 and Bo variations in quantitative T2 measurements using MRI.  Magn Reson Med . 2000;  43 589-593
  • 31 Hennig J. Clinical applications and methodological developments of the RARE technique.  Magn Reson Imag . 1988;  4 391-395
  • 32 Hilfiker P, Zanetti M, Debatin J F, McKinnon G, Hodler J. Fast spin-echo inversion-recovery imaging versus fast spin-echo imaging in bone marrow abnormalities.  Invest Radiol . 1995;  30 110-114