Int J Sports Med 2002; 23(2): 136-141
DOI: 10.1055/s-2002-20136
Training and Testing
© Georg Thieme Verlag Stuttgart · New York

Moment and Power of Lower Limb Joints in Running

A.  Belli1 , H.  Kyröläinen2 , P.  V.  Komi2
  • 1Laboratoire de Physiologie de l’Exercice, Département des Sciences du Sport, Université de Saint Etienne, Saint Etienne, France
  • 2Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
Further Information

Publication History

June 25, 2001

Publication Date:
13 February 2002 (online)

Abstract

The aim of this study was to test the suitability of inverse dynamics method for instantaneous expression of joint kinetics and muscle function with various parts of the ground contact when running at different speeds. Nine male runners ran at speeds of 4.0 m × s-1, 6.0 m × s-1 and at their maximal speed. 2-D video analysis (200-frame × s-1) was synchronized with 3-D ground reaction force measurements (10 m-long force platform). Mechanical joint power was computed from 2-D segment dynamics associated with joint forces and net moments in multi-body movements. From these computations two successive functional phases during contact were found in the ankle and knee joints: 1) extensor negative and 2) extensor positive work. The hip joint showed three phases: 1) extensor positive, 2) flexor negative and 3) flexor positive work. Peak joint power increased in every investigated joint with increasing running speed. The highest changes were observed in the hip joint: from 327 ± 203 W at a speed of 4.0 m × s-1 to 1642 ± 729 W (p < 0.01) at the maximal speed. The results may suggest that the role of the ankle and knee extensors is to create high joint stiffness before and during the contact phase, while the hip extensors are the prime forward movers of the body with increasing running speed. In conclusion, the inverse dynamics method may be of importance for use in specifying the joint kinetics and muscle function. However, the interpretation may become clearer when this method is used simultaneously with EMG measurements.

References

  • 1 Ae M, Miyashita K, Yokoi T, Ooki S, Shibukawa K. Mechanical powers and contributions of the lower limb muscles during running at different speeds.  Bull, Health & Sports Sciences, Univ. of Tsukuba. 1986;  9 229-239
  • 2 Asmussen E, Bonde-Petersen F. Apparent efficiency and storage of elastic energy in human muscles during exercise.  Acta Physiol Scand. 1974;  92 537-545
  • 3 Buczec F L, Cavanagh P R. Stance phase knee and ankle kinematics and kinetics during level and downhill running.  Med Sci Sports Exerc. 1990;  22 669-677
  • 4 Burdett G A. Forces predicted at the ankle during running.  Med Sci Sports Exerc. 1986;  4 308-316
  • 5 Caldwell G E, Forrester L W. Estimates of mechanical work and energy transfers demonstration of a rigid body power model of the recovery leg in gait.  Med Sci Sports Exerc. 1992;  24 1396-1412
  • 6 Cavagna G A. Force platforms as ergometers.  J Appl Physiol. 1975;  39 174-179
  • 7 Cavanagh P R, Lafortune M A. Ground reaction forces in distance running.  J Biomech. 1980;  13 397-406
  • 8 Demster W T. Space requirements of the sated operator. WADC Technical Report. Ohio; Wright-Patterson Air Force Base 1955: 155-159
  • 9 Farley C T, Houdijik H HP, van Strien C, Louie M. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses.  J Appl Physiol. 1998;  85 1044-1055
  • 10 Farley C T, Morgenroth D C. Leg stiffness primarily depends on ankle stiffness during human hopping.  J Biomech. 1999;  32 267-273
  • 11 Fenn W O. Work against gravity and work due to velocity changes in running.  Am J Physiol. 1930;  93 433-462
  • 12 Harrison R N, Lees A, McCullagh J J, Rowe W B. A bioengineering analysis of human muscle and joint forces in the lower limbs during running.  J Sports Sci. 1986;  4 201-218
  • 13 Horita T, Komi P V, Nicol C, Kyröläinen H. Effect of exhausting stretch-shortening cycle exercise on the time course of mechanical behaviour in the drop jump: possible role of muscle damage.  Eur J Appl Physiol. 1999;  79 160-167
  • 14 van Ingen Schenau G J, Bobbert M F, Huijing P A, Woittiez R D. The instaneous torque-angular velocity relation in plantar flexion during jumping.  Med Sci Sports Exerc. 1985;  17 422-426
  • 15 Ito A, Komi P V, Sjödin B, Bosco C, Karlsson J. Mechanical efficiency of positive work in running at different speeds.  Med Sci Sports Exerc. 1983;  15 299-308
  • 16 Jacobs R, Bobbert M F, van Ingen Schenau G J. Function of mono- and biarticular muscles in running.  Med Sci Sports Exerc. 1993;  25 1163-1173
  • 17 Komi P V. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exerc Sports Sci Rev 12. Lexington; The Collamore Press 1984: 81-121
  • 18 Komi P V, Gollhofer A. Stretch reflexes can have an important role in force enhancement during SSC exercise.  J Appl Biomech. 1997;  13 451-460
  • 19 Lafortune M A, Cavanagh P R, Sommer H J, Kalenak A. Three-dimensional kinematics of the human knee during walking.  J Biomech. 1992;  25 347-357
  • 20 Mann R A, Hagy J L. Running, jogging and walking: A comparative electromyographic and biomechanical study. In: Bateman JE, Trott A (eds) The Foot and Ankle. New York; Thieme-Sratton 1980: 167-175
  • 21 Mero A, Komi P V. Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters.  Eur J Appl Physiol. 1986;  55 553-561
  • 22 Nilsson J, Thorstensson A. Ground reaction forces at different speeds of human walking and running.  Acta Physiol Scand. 1989;  136 217-227
  • 23 Nilsson J, Thorstensson A, Halbertsma J. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.  Acta Physiol Scand. 1985;  123 457-475
  • 24 Stefanyshyn D J, Nigg B M. Influence of midsole bending stiffness on joint energy and jump height performance.  Med Sci Sports Exerc. 2000;  32 471-476
  • 25 Wells R P. Mechanical energy costs of human movement: an approach to evaluating the transfer possibilities of two-joint muscles.  J Biomech. 1988;  21 955-964
  • 26 Williams K R. The relationship between mechanical and physiological energy estimates.  Med Sci Sports Exerc. 1985;  17 317-325

Dr. H. Kyröläinen

Department of Biology of Physical Activity · University of Jyväskylä

40100 Jyväskylä · Finland

Fax: +35 (8142) 602071

Email: heikki@maila.jyu.fi