Klin Padiatr 2002; 214(1): 1-7
DOI: 10.1055/s-2002-19859
Originalarbeit

© Georg Thieme Verlag Stuttgart · New York

Protein content and biophysical properties of tracheal aspirates form neonates with respiratory failure[1]

Biochemische und biophysikalische Eigenschaften von Trachealaspiraten Früh- und Neugeborener mit akutem respiratorischen VersagenEva  Landmann1 , L.  Gortner1 , I.  Reiss1 , S.  Jonas1 , E.  Weller2 , F.  K.  Tegtmeyer3
  • 1 Pediatric Center, Justus-Liebig-University, Gießen, Germany
  • 2 Boehringer-Ingelheim Company, Biberach, Germany
  • 3 Kinderklinik Park Schönfeld, Kassel, Germany
Further Information

Publication History

Publication Date:
19 September 2002 (online)

Abstract

Background: We aimed at assessing the quality and quantity of protein-leakage across the alveolar-capillary membrane and its influence on surfactant function during the early neonatal period in preterm infants compared to newborns both with respiratory failure.

Patients and methods: We therefore prospectively analyzed total protein, elastase-α1-proteinase inhibitor complex (E-α1-PI) and α2-macroglobulin concentrations in tracheal aspirates from 31 infants ≤ 32 weeks gestational age (group 1 : 29.3 ± 2 weeks, 1214 ± 410 g [means ± SEM]) and from 21 neonates > 32 weeks (group 2 : 37.5 ± 3 weeks, 2890 ± 600 g [means ± SEM]) and measured their surface activity in the pulsating bubble surfactometer.

Results: Day 1 total protein and α2-macroglobulin levels indicated an initial high leakage that declined to day 3 in both groups (from 1652 ± 241 to 708 ± 227 mg/l; p < 0.05; resp. from 28 ± 6 to 12 ± 4 mg/l [means ± SEM]). In group 2 E-α1-PI concentrations were significantly elevated at day 1 compared to group 1 (15 754 ± 5766 versus 3320 ± 1056 μg/l [means ± SEM]). In both groups a high minimum surface tension (15 - 30 mN/m) was recorded from day 1 - 4.

Conclusions: These results suggest in larger newborns a secondary surfactant deficiency due to protein-leakage to play an important role in the pathogenesis of respiratory failure. The increased alveolar-capillary membrane permeability might be caused by inflammatory ARDS-like mechanisms.

Zusammenfassung

Hintergrund: Ziel der Studie ist es, das Ausmaß und die Qualität des Proteineinstroms in den Alveolarraum durch die alveolokapilläre Membran bei sehr unreifen Frühgeborenen und reiferen Früh- und Neugeborenen zu vergleichen.

Patienten und Methoden: Im Rahmen einer prospektiven Studie wurde die Elastase-α1-Proteinaseinhibitorkomplex- (E-α1-PI) und α2-Makroglobulinkonzentration in den Trachealaspiraten von 31 Frühgeborenen eines Gestationsalters ≤ 32 Wochen (Gruppe 1: 29,3 ± 2 Wochen; 1214 ± 410 g [MW ± SEM]) und von 21 reiferen Neugeborenen (Gruppe 2: 37,5 ± 3 Wochen; 2890 ± 600 g [MW ± SEM]) gemessen. Zusätzlich wurden die oberflächenaktiven Eigenschaften der Trachealaspirate am „Pulsating Bubble Surfactometer” gemessen.

Ergebnisse: Die am ersten Lebenstag gemessenen Gesamtprotein- und α2-Makroglobulinwerte zeigen eine initial hohe Leckage, die in beiden Gruppen bis zum 3. Tag signifikant abfällt (von 1652 ± 241 auf 708 ± 227 mg/l; p < 0,05; bzw. von 28 ± 6 auf 12 ± 4 mg/l [MW ± SEM]). In Gruppe 2 fanden sich am ersten Lebenstag signifikant höhere E-α1-PI-Konzentrationen als in Gruppe 1 (15 754 ± 5766 μg/l bzw. 3320 ± 1056 [means ± SEM]). In beiden Gruppen wurden innerhalb der ersten 4 Lebenstage hohe Oberflächenspannungswerte gemessen (γmin nach 150 Zyklen: 1530 mN/m).

Schlussfolgerung: Diese Ergebnisse weisen auf einen durch surfactantinhibierende Plasmaproteine bedingten sekundären Surfactantmangel bei reiferen Früh- und Neugeborenen hin. Eine inflammatorisch induzierte Läsion könnte die erhöhte Durchlässigkeit der alveolokapillären Membran in dieser Gruppe erklären.

1 This research was supported in part by Boehringer-Ingelheim, Biberach/Riss, Germany.

Literatur

  • 1 Bachofen H, Schürch S, Urbinelli M, Weibel E R. Relations among alveolar surface tension, surface area, volume, and recoil pressure.  J Appl Physiol. 1987;  62 1878-1887
  • 2 Boger C, Yuan H Z, Schultek T, Tegtmeyer K F, Wood W G. Development and clinical evaluation of immunoluminometric assays for lactoferrin and elastase-α1-proteinase inhibitor complexes in body fluids with special references to bronchoalveolar lavage and neonatal sepsis.  J Clin Chem Clin Biochem. 1988;  26 645-651
  • 3 Brown S D. ARDS. History, definitions, and physiology.  Respir Care Clin N Am. 1998;  4 567-582
  • 4 Brus F, van Oeveren W, Okken A, Oetonio S B. Number and activation of circulating polymorphonuclear leucocytes and platelets are associated with neonatal respiratory distress syndrome severity.  Pediatrics. 1997;  99 672-680
  • 5 Couchard M, Polge J, Bomsel F. Maladie des membranes hyalines. Diagnostic et surveillance radiologiques. Traitement, complications. Etude radioclinique de 589 cas.  Ann Radiol. 1974;  17 669-683
  • 6 Dargaville P A, South M, Vervaart P, McDougall P N. Validity of markers of dilution in small volume lung lavage.  Am J Respir Crit Care Med. 1999;  160 778-784
  • 7 Enhorning G. Pulsating bubble technique for evaluating pulmonary surfactant.  J Appl Physiol. 1977;  43 198-203
  • 8 Faix R G, Viscardi R M, DiPietro M A, Nicks J J. Adult respiratory distress syndrome in full-term newborns.  Pediatrics. 1989;  83 971-976
  • 9 Friedrich W, Schmalisch G, Haufe M, Kling R, Wauer R R. Surface tension measurements on pharyngeal and tracheal aspirate samples from newborns without and with respiratory distress syndrome.  Biol Neonate. 1996;  70 75-83
  • 10 Fuchimukai T, Fujiwara T, Takahashi A, Enhorning G. Artiricial pulmonary surfactant inhibited by proteins.  J Appl Physiol. 1987;  62 429-437
  • 11 Gersony W M. Patent ductus arteriosus in the neonate.  Pediatr Clin North Am. 1986;  33 545-560
  • 12 Gortner L, Bühler S, Weller E. Biochemical and biophysical evaluation of tracheal aspirates in preterm infants: Clinical implications.  Pediatr Res. 1992;  32 635A
  • 13 Gortner L, Pohlandt F, Bartmann P. Effects of bovine surfactant in very low birth weight infants with congenital pneumonia.  Monatsschr Kinderheilkd. 1990;  138 274-278
  • 14 Gortner L, Pohlandt F, Bartmann P. Bovine surfactant in full-term neonates with adult respiratory distress syndrome-like disorders.  Pediatrics. 1994;  93 538
  • 15 Gortner L, Weller E, Raap P, Möller J C, Tegtmeyer F K. lnhibition of surfactant in-vitro properties by various proteins.  Pediatr Res. 1994;  36 80A
  • 16 Griese M, Westerburg B. Surfactant function in neonates with respiratory distress syndrome.  Respiration. 1998;  65 136-142
  • 17 Groneck P, Götze-Speer B, Oppermann M, Eiffert H, Speer C P. Association of pulmonary inflammation and increased micro-vascular permeability during the development of bronchopulmonary dysplasia: A sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates.  Pediatrics. 1994;  93 712-718
  • 18 Günther A, Siebert C, Schmidt R, Ziegler S, Grimminger F, Yabut M, Temmesfeld B, Walmrath D, Morr H, Seeger W. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome and cardiogenic lung edema.  Am J Respir Crit Care Med. 1996;  153 176-184
  • 19 Hallman M, Merritt T A, Akino T, Bry K. Surfactant protein A, phosphatidylcholine, and surfactant inhibitors in epithelial lining fluid.  Am Rev Respir Dis. 1991;  144 1376-1384
  • 20 Herting E, Gefeller O, Land M, van Sonderen L, Harms K, Robertson B. Surfactant treatment of neonates with respiratory failure and group B streptococcal infection(.) Members of the Collaborative European Multicenter Study Group.  Pediatrics. 2000;  106 957-964
  • 21 Ikegami M, Jacobs H, Jobe A. Surfactant function in respiratory distress syndrome.  J Pediatr. 1983;  102 443-447
  • 22 Ikegami M, Jobe A H, Tabor B L, Rider E D, Lewis J F. Lung albumin recovery in surfactant-treated preterm ventilated lambs.  Am Rev Respir Dis. 1992;  145 1005-1008
  • 23 Jefferies A L, Coates G, O"Brodovich H. Pulmonary epithelial permeability in hyaline membrane disease.  N Engl J Med. 1984;  311 1075-1080
  • 24 Jobe A, Jacobs H, Ikegami M, Berry D. Lung protein leaks in ventilated lambs: effect of gestational age.  J Appl Physiol. 1985;  58 1246-1251
  • 25 Lotze A, Mitchell B R, Bulas D I, Zola E M, Shalwitz R A, Gunkel J H. Survanta in term infants study group. Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure.  J Pediatr. 1998;  132 40-47
  • 26 Merritt T A, Cochrane C G, Holcomb K, Bohl B, Hallman M, Strayer D, Edwards D K, Gluck L. Elastase and α1-proteinase inhibitor activity in tracheal aspirates during respiratory distress syndrome.  J Clin Invest. 1983;  72 656-666
  • 27 Munshi U K, Niu J O, Siddiq M M, Parton L A. Elevation of interleukin-8 and interleukin-6 precedes the influx of neutrophils in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia.  Pediatr Pulmonol. 1997;  24 331-336
  • 28 Ogawa Y, Shimizu H, Itakura Y, Ohama Y, Arakawa H, Amizuka T, Obata M, Kakinuma R. Functional pulmonary surfactant deficiency and neonatal respiratory disorders.  Pediatr Pulmonol. 1999;  18 175-177
  • 29 Papile L A, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm.  J Pediatr. 1978;  92 529-534
  • 30 Parsley E L. Acute respiratory distress syndrome. Cellular biology and pathology.  Respir Care Clin N Am. 1998;  4 583-609
  • 31 Pfenninger J, Tschaeppeler H, Wagner B P, Weber J, Zimmerman A. The paradox of adult respiratory distress syndrome in neonates.  Pediatr Pulmonol. 1991;  10 18-24
  • 32 Primiano F P, Chatburn R L, Lough M D. Mean airway pressure: theoretical considerations.  Crit Care Med. 1982;  10 378-383
  • 33 Pugin J, Verghese G, Widmer M C, Matthay M A. The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome.  Crit Care Med. 1999;  27 304-312
  • 34 Reiber H. Kinetics of protein agglomeration. A nephelometric method for the determination of total protein in biological samples.  J Biochem Biophys Methods. 1983;  7 153-160
  • 35 Roberts J D, Shaul P W. Advances in the treatment of persistent pulmonary hypertension of the newborn.  Pediatr Clin North Am. 1993;  40 1983-1004
  • 36 Robertson P A, Sniderman S H, Laros R K, Cowan R, Heilbron D, Goldenberg R L, Iams J D, Creasy R K. Neonatal morbidity according to gestational age and birth weight from five tertiary care centers in the United States, 1983 through 1986.  Am J Obstet Gynecol. 1992;  166 1629-1645
  • 37 Schürch S. Surface tension at low lung volumes: dependence on time and alveolar size.  Respir Physiol. 1982;  48 339-355
  • 38 Sherman M P, Goetzman B W, Ahlfors C E, Wennberg R P. Tracheal aspiration and its clinical correlates in the diagnosis of congenital pneumonia.  Pediatrics. 1980;  65 258-263
  • 39 Soll R F, Dargaville P. Surfactant for meconium aspiration syndrome in full term infants.  Cochrane Database Syst Rev. 2000;  CD 002-054
  • 40 Tegtmeyer F K, Maacks S, Wood W C, Wiebicke W. Elastase-α1-Proteinase Inhibitor and lactoferrin concentrations in endotracheal aspirates of ventilated newborns.  Pediatr Pulmonol. 1992;  13 90-94
  • 41 Toce S S, Farrel P M, Leavitt L A, Samuels D P, Edwards D K. Clinical and roentgenographic scoring systems for assessing bronchopulmonary dysplasia.  Am J Dis Child. 1984;  138 581-585
  • 42 Wang J Y, Yeh T F, Lin Y J, Chen W Y, Lin C H. Early postnatal dexamethasone therapy may lessen lung inflammation in premature infants with respiratory distress syndrome on mechanical ventilation.  Pediatr Pulmonol. 1997;  23 955-981
  • 43 Wiswell T E, Bent R C. Meconium staining and the meconium aspiration syndrome.  Pediatr Clin North Am. 1993;  40 955-981

1 This research was supported in part by Boehringer-Ingelheim, Biberach/Riss, Germany.

Eva Landmann

Department of Pediatrics and Neonatology

Pediatric Center

Justus-Liebig-University, Gießen

Feulgenstraße 12

35392 Gießen

Germany

Phone: +49-641-9943410

Fax: +49-641-9943419

Email: Eva.Landmann@paediat.med.uni-giessen.de