Subscribe to RSS
DOI: 10.1055/s-2002-19360
Regioselective Allylic Amination of the Baylis-Hillman Adducts: An Easy and Practical Access to the Baylis-Hillman Adducts of N-Tosylimines
Publication History
Publication Date:
01 February 2007 (online)
Abstract
The reaction of the in situ generated DABCO salt of Baylis-Hillman acetate and tosylamide in aqueous THF gave the Baylis-Hillman adduct of N-tosylimine in good yield. The method seems very simple and practical for the preparation of Baylis-Hillman adduct of N-tosylimine.
Key words
Baylis-Hillman adducts - N-tosylimine - DABCO - allylic amination - deracemization
-
1a
Ciganek E. Organic Reactions Vol. 51: John Wiley and Sons; New York: 1997. p.201 -
1b
Drewes SE.Roos GHP. Tetrahedron 1988, 44: 4653 -
1c
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 -
2a
Perlmutter P.Teo CC. Tetrahedron Lett. 1984, 25: 5951 -
2b
Bertenshaw S.Kahn M. Tetrahedron Lett. 1989, 30: 2731 -
2c
Kundig EP.Xu LH.Schnell B. Synlett 1994, 413 -
2d
Richter H.Jung G. Tetrahedron Lett. 1998, 39: 2729 -
2e
Yamamoto K.Takagi M.Tsuji J. Bull. Chem. Soc. Jpn. 1988, 61: 319 -
Quite recently Balan and Adolfsson have reported the facile synthesis of the Baylis-Hillman adducts of N-tosylimines through a three-component reaction of arylaldehydes, tosylamide and a Michael acceptor, see: (f)
Balan D.Adolfsson H. J. Org. Chem. 2001, 66: 6498 -
3a
Kim JN.Lee HJ.Lee KY.Kim HS. Tetrahedron Lett. 2001, 42: 3737 -
3b
Lee HJ.Kim HS.Kim JN. Tetrahedron Lett. 1999, 40: 4363 -
3c
Lee HJ.Seong MR.Kim JN. Tetrahedron Lett. 1998, 39: 6223 -
3d
Genisson Y.Massardier C.Gautier-Luneau I.Greene AE. J. Chem. Soc., Perkin Trans. 1 1996, 2869 -
3e
Li G.Kim SH.Wei H.-X. Tetrahedron 2000, 56: 719 -
3f
Kundig EP.Xu L.-H.Romanens P. Tetrahedron Lett. 1995, 36: 4047 -
3g
Takagi M.Yamamoto K. Tetrahedron 1991, 47: 8869 - For the synthesis of N-tosylimines, see:
-
4a
Jennings WB.Lovely CJ. Tetrahedron 1991, 47: 5561 -
4b
Trost BM.Marrs C. J. Org. Chem. 1991, 56: 6468 -
4c
Boger DL.Corbett WL. J. Org. Chem. 1992, 57: 4777 -
4d
Boger DL.Corbett WL.Curran TT.Kasper AM. J. Am. Chem. Soc. 1991, 113: 1713 -
4e
Sisko J.Weinreb SM. Tetrahedron Lett. 1989, 30: 3037 -
4f
Sisko J.Weinreb SM. J. Org. Chem. 1990, 55: 393 -
4g
Georg GI.Harriman GCB.Peterson SA. J. Org. Chem. 1995, 60: 7366 -
4h
Love BE.Raje PS.Williams TCII. Synlett 1994, 493 -
5a
Im YJ.Kim JM.Mun JH.Kim JN. Bull. Korean Chem. Soc. 2001, 22: 349 -
5b
Drewes SE.Horn MM.Ramesar N. Synth. Commun. 2000, 30: 1045 -
5c
Basavaiah D.Kumaragurubaran N. Tetrahedron Lett. 2001, 42: 477 -
5d
Basavaiah D.Kumaragurubaran N.Sharada DS. Tetrahedron Lett. 2001, 42: 85 - Cyclohexene derivatives were obtained as diastereomeric mixtures from 1e and 1h via the elimination of acetic acid and concomitant Diels-Alder reaction. Diethyl 4-(1-hexenyl)-3-butyl-1-cyclohexene-1,4-dicarboxylate (for 1e) and 4-(1-hexenyl)-3-butyl-1,4-dicyano-1-cyclohexene (for 1h) were isolated in 43% and 48%, respectively, as an oil. For such reactions, see:
-
6a
Poly W.Schomburg D.Hoffmann HMR. J. Org. Chem. 1988, 53: 3701 -
6b
Hoffmann HMR.Eggert U.Poly W. Angew. Chem., Int. Ed. Engl. 1987, 26: 1015 -
6c
Hoffman HMR.Weichert A.Slawin AMZ.Williams DJ. Tetrahedron 1990, 46: 5591 - 8
Trost BM.Tsui H.-C.Toste FD. J. Am. Chem. Soc. 2000, 122: 3534
References
Other nucleophiles can be used in the reaction such as phenols and primary nitroalkanes, which have the similar pKa values as that of tosylamide.
9Typical Procedure for the Formation of 3a: To a stirred solution of the Baylis-Hillman acetate 1a (496 mg, 2.0 mmol) in aq THF (10 mL, H2O-THF, 1:1) was added DABCO (270 mg, 2.4 mmol) and stirred at r.t. for 10 min. To the reaction mixture p-toluenesulfonamide (345 mg, 2.0 mmol) was added and the whole mixture was stirred at 60-70 °C for 48 h. After the usual workup process and column chromatography (SiO2, hexane/ether, 1:1), 3a was obtained as a white solid, 540 mg (75%); mp 100-101 °C (ref. [2a] 90-92 °C); IR (CH2Cl2): 3289, 1716, 1327, 1161 cm-1; 1H NMR (CDCl3): δ = 1.14 (t, J = 7.2 Hz, 3 H), 2.41 (s, 3 H), 4.04 (q, J = 7.2 Hz, 2 H), 5.30 (d, J = 9.0 Hz, 1 H), 5.65 (d, J = 9.0 Hz, 1 H), 5.81 (s, 1 H), 6.21 (s, 1 H), 7.13-7.69 (m, 9 H); 13C NMR (CDCl3): δ = 13.89, 21.46, 59.12, 60.97, 126.44, 127.21, 127.51, 127.66, 128.49, 129.44, 137.75, 138.75, 138.84, 143.29, 165.27; CIMS: m/z (%) = 189(92), 204(100), 205(15), 360(1) [MH+]. Anal. Calcd for C19H21NO4S: C, 63.49; H, 5.89; N, 3.90. Found: C, 63.32; H, 5.91; N, 3.94.