Subscribe to RSS
DOI: 10.1055/s-2002-19341
A Short Diastereo- and Enantioselective Synthesis of cis-4,5-Disubstituted Oxazolidin-2-ones
Publication History
Publication Date:
01 February 2007 (online)
Abstract
The asymmetric synthesis of cis-4,5-disubstituted oxazolidin-2-ones is described. Following a four step reaction sequence of α-alkylation, 1,2-addition with subsequent carbamate protection, cyclization and concluding with cleavage of the auxiliary the title compounds are obtained in moderate yields and in excellent diastereo- and enantiomeric excesses (de = 88 - > 96%, ee > 96%).
Key words
asymmetric synthesis - hydrazones - nucleophilic addition - α-alkylation - oxazolidinones
-
For a review, see: (a)
Diekema DJ.Jones RN. Drugs 2000, 59: 1 -
1b
Iwama S.Segawa M.Fujii S.Ikeda K.Katsumura S. Bioorg. Med. Chem. Lett. 1998, 8: 3495 -
1c
Moureau F.Wouters J.Vercauteren DP.Collin S.Evrard G. Eur. J. Med. Chem. Chim. Ther. 1992, 27: 939 -
2a
Lohray BB.Baskaran S.Rao BS.Reddy BY.Rao IN. Tetrahedron Lett. 1999, 40: 4855 -
For a recent example of the synthesis of 3,5-disubstituted oxazolidin-2-ones on solid-support, see: (b)
Ten Holte P.van Esseveldt BCJ.Thijs L.Zwanenburg B. Eur. J. Org. Chem. 2001, 2965 -
3a
Drautz H.Zähner H.Kupfer K.Keller-Schierlein W. Helv. Chim. Acta 1981, 64: 1752 -
3b
Grabley S.Kluge H.Hoppe H.-U. Angew. Chem., Int. Ed. Engl. 1987, 26: 690 ; Angew. Chem. 1987, 99, 692 -
4a
Kakeya H.Morishita M.Kobinata K.Osono M.Ishizuka M.Osada H. J. Org. Chem. 1999, 64: 1052 -
4b
Kakeya H.Morishita M.Kobinata K.Osono M.Ishizuka M.Osada H. J. Antibiot. 1998, 51: 1126 -
5a
Evans DA.Bartroli J.Shih TL. J. Am. Chem. Soc. 1981, 103: 2127 -
For a review, see: (b)
Ager DJ.Prakash I.Schaad DR. Aldrichimica Acta 1997, 30: 3 - For reviews, see:
-
6a
Dyen ME.Swern D. Chem. Rev. 1967, 67: 197 -
6b
Ager DJ.Prakash I.Schaad DR. Chem. Rev. 1996, 96: 835 - 7 For a review on the synthesis of vicinal amino alcohols, see:
Bergmeier S. Tetrahedron 2000, 56: 2561 - For recent examples, see:
-
12a
Jordá-Gregori JM.González-Rosende ME.Cava-Montesinos P.Sepúlveda-Arques J.Galeazzi R.Orena M. Tetrahedron: Asymmetry 2000, 11: 3769 -
For a recent example of one-pot-preparation of trans oxazolidin-2-ones, see: (b)
Barta NS.Sidler DR.Somerville KB.Weissman SA.Larsen RD.Reider PJ. Org. Lett. 2000, 2: 2821 -
12c
Hakogi T.Monden Y.Iwama S.Katsumura S. Org. Lett. 2000, 2: 2627 -
12d
Tomasini C.Vecchione A. Org. Lett. 1999, 1: 2153 -
12e
Bergmeier SC.Stanchina DM. J. Org. Chem. 1999, 64: 2852 -
12f
Sakamoto Y.Shiraishi A.Seonhec J.Nakata T. Tetrahedron Lett. 1999, 40: 4203 -
12g
Zhao H.Thurkauf A. Synlett 1999, 1280 -
12h
Agami C.Amiot F.Couty F.Dechoux L.Kaminsky C.Venier O. Tetrahedron: Asymmetry 1998, 9: 3955 -
13a
Enders D.Reinhold U. Angew. Chem., Int. Ed. Engl. 1995, 34: 1219 ; Angew. Chem. 1995, 107, 1332 -
13b
Enders D.Reinhold U. Liebigs Ann. Chem. 1996, 11 - 14 Ridder, A.; Enders, D. RWTH Aachen, unpublished results, 2000. For the ozonolysis of the silyl-protected 1,4-dihydroxy-cis-2-butene see also:
Nicolaou KC.Liu J.-J.Yang Z.Ueno H.Sorensen EJ.Claiborne CF.Guy RK.Hwang C.-H.Nakada M.Nantermet PG. J. Am. Chem. Soc. 1995. 117: p.634 ; the resulting aldehyde was allowed to react with the hydrazine without further purification -
15a
Enders D.Klatt M. In Encyclopedia of Reagents for Organic Synthesis Vol. 1:Paquette LA. John Wiley and Sons; Chichester: 1995. p.178 -
15b
Enders D. In Asymmetric Synthesis Vol. 3:Morrison JD. Academic Press; New York: 1984. p.275 -
15c
Enders D.Fey P.Kipphardt H. Org. Synth. 1987, 65: 173 and 183 - 16 For a short review on the synthesis of alkaloids, see:
Enders D.Thiebes C. Pure Appl. Chem. 2001, 73: 573 - For reviews on the 1,2-addition of organometallic reagents, see:
-
17a
Denmark SE.Nicaise OJ.-C. Chem. Commun. 1996, 999 -
17b
Enders D.Reinhold U. Tetrahedron: Asymmetry 1997, 8: 1895 -
17c
Bloch R. Chem. Rev. 1998, 98: 1407 -
17d
Kobayashi S.Ishitani H. Chem. Rev. 1999, 99: 1069 -
17e
Merino P.Franco S.Merchan FL.Tejero T. Synlett 2000, 442 - 19
Larson GL.Klesse R. J. Org. Chem. 1985, 50: 3627 - 20
Connor DS.Klein GW.Taylor GN. Org. Synth. 1972, 16 -
24a
Negishi E.Swanson DR.Rousset CJ. J. Org. Chem. 1990, 55: 5406 -
24b
Bailey WF.Punzalan ER. J. Org. Chem. 1990, 55: 5404 -
25a
Cainelli G.Panunzio M.Contento M.Giacomini D.Mezzina E.Giovagnoli D. Tetrahedron 1993, 49: 3809 -
25b
Zietlow A.Steckhan E. J. Org. Chem. 1994, 59: 5658 -
28a
Nübling C. Dissertation RWTH Aachen; Germany: 1987. -
28b
Denmark SE.Nicaise O.Edwards JP. J. Org. Chem. 1990, 55: 6219 -
28c
Enders D.Teschner P.Gröbner R.Raabe G. Synthesis 1999, 247 -
28d
Enders D.Teschner P.Raabe G. Heterocycles 2000, 52: 733
References
By nucleophilic addition to α-amino carbonyl compounds, α-amino acids, α-hydroxy imines, or ring opening of epoxides and aziridines.
9By aldol-type reaction of an anion α to nitrogen with a carbonyl compound or pinacol-type reaction of imino- or oximino compounds with a carbonyl compound.
10Sequential addition of the heteroatoms to olefins leads to trans product. Simultanous introduction gives cis product.
11Most common method is the addition of an amino equivalent (azide or carbamate) to oxygen containing substrates.
18General Procedure of α-Alkylation of Glycol Aldehyde SAMP-hydrazone 6: A solution of 6 (10 mmol) in anhyd THF (5 mL) was slowly added to a solution of 2.0 equiv LDA (freshly prepared from n-butyllithium and diisopropylamine) in anhyd THF (20 mL) at -78 °C. After being stirred at that temperature for 15 h, methyl iodide (30 mmol) was added at -100 °C. The solution was stirred for 1 h at that temperature and then allowed to warm up to r.t. within 20 h. The reaction mixture was quenched with sat. NH4Cl solution (15 mL). The aq portion was extracted with Et2O (3 × 10 mL), and the combined organic layers were washed with sat. NaCl solution, dried over anhyd Na2SO4 and concentrated in vacuo. After the isomer ratio was determined, flash column chromatography of the residue on silica gel eluting with pentane-Et2O gave 7a.
21Same configuration of the generated stereogenic center as in 7a-d, but change of priority ranking leads to (R)-nomenclature.
22Typical Procedure of 1,2-Addition to Glycol Aldehyde SAMP-hydrazone, Cyclization and N,N-Cleavage to Oxazolidin-2-ones: A solution of t-butyllithium (1.6 M) in hexane (9.6 mmol) was slowly added to a solution of 7a (4.8 mmol) in anhyd THF (24 mL) at -100 °C. In case of freshly prepared RLi reagent (entry 6, 7) the hydrazone solution was added. The solution was stirred for 15 h and allowed to warm up to -30 °C. After cooling down to -78 °C MOCCl (48 mmol) was rapidly added. After being stirred at that temperature for 15 h, the reaction mixture was quenched with sat. NaHCO3 solution (15 mL). The aq portion was extracted with Et2O (3 × 15 mL), the combined organic layers were washed with brine, dried over anhyd Na2SO4 and concentrated in vacuo. After filtration through silicia gel washing with pentane-Et2O the crude product was dissolved in dry THF (15 mL) and TBAF (1 M) in THF (14.4 mmol) was added at r.t. After being stirred for 4 d at that temperature, the reaction mixture was concentrated in vacuo at 35 °C. The residue was filtered through silica gel washing with pentane-Et2O. The crude product was dissolved in THF (15 mL) and added to a solution of Li (48 mmol) in NH3 (125 mL) at -78 °C. The solution was allowed to warm up to -33 °C. After being stirred at the temperature for 40 min, the reaction mixture was quenched with NH4Cl (2.5 g). NH3 was removed at r.t. and the residue was extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were washed with brine and dried over anhyd Na2SO4 and concentrated in vacuo. After the isomer ratio was determined, flash column chromatography of the residue on silica gel eluting with pentane-Et2O gave the desired product 10b.
23For some examples higher temperature of up to 35 °C was necessary to reduce the reaction time.
26Up to > 98% de according to ref. [13] .
27Major diastereomer isolated by flash chromatography. Relative configuration of the two generated centers at the oxazolidinone ring towards the configurationally known auxiliary (S")-center gives the absolute configuration of 9a.