Deutsche Zeitschrift für Onkologie 2001; 33(3): 91-99
DOI: 10.1055/s-2001-19447
Wissenschaft & Forschung

Karl F. Haug Verlag, in: MVH Medizinverlage Heidelberg GmbH & Co. KG

Electro-hyperthermia: a New Paradigm in Cancer Therapy

Andras Szasz1,2 , Oliver Szasz1 , Nora Szasz3
  • 1 Group Biotech. Faculty Engineering, Szent Istvan University, Gödöllö, Hungary
  • 2 Faculty of Engineering, Strathclyde University, Glasgow, Great-Britain
  • 3 Div. Bioengineering and Environ. Health, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
Further Information

Publication History

Publication Date:
08 January 2002 (online)

Summary

Hyperthermia is a rapidly developing treatment method in tumor-therapy. The classical effect is based on well-focused energy absorption targeting the malignant tissue. The treatment temperature has been considered as the main technical parameter. Unfortunately, the heat-shock protein (HSP) synthesis may considerably suppress the treatment's efficiency, adapting cells to survive the shock. Electro-hyperthermia heats up the targeted tissue by means of electricity, producing less HSP-synthesis in the cells than a usual hyperthermia process. The main idea is to keep the energy absorption in the extracellular liquid and, by heating it, increase the ion-mobility, intensify the metabolic rate of the cells, and destroy the cell membrane before the heat-shock activates the intra-cellular HSP mechanisms.

Zusammenfassung

Hyperthermie ist eine sich schnell entwickelnde Behandlungsmethode in der Tumortherapie. Der klassische Effekt basiert auf einer genau gebündelten Energieabsorption, die auf das bösartige Gewebe zielt. Die Behandlungstemperatur wurde als der wichtigste technische Parameter angesehen. Leider kann die Hitzeschockprotein-Synthese (HSP) die Wirksamkeit der Behandlung erheblich beeinträchtigen, weil sich die Zellen entsprechend anpassen, um den Schock zu überstehen. Bei der Elektro-Hyperthermie wird das Zielgewebe mittels Elektrizität erwärmt, wodurch es in den Zellen zu einer geringeren Hitzeschockprotein-Synthese (HSP) als beim herkömmlichen Hyperthermie-Prozess kommt. Die Hauptidee besteht darin, die Energieabsorption auf die Extrazellularflüssigkeit zu beschränken und durch Erhitzen die Ionenmobilität zu erhöhen, die Stoffwechselrate der Zellen zu intensivieren und die Zellmembran zu zerstören, bevor durch den Hitzeschock der intrazellulare Mechanismus der Hitzeschockprotein-Synthese aktiviert wird.

References

  • 01 Dewhirst M. W., Prosnitz L., Thrall D., Prescott D., Clegg S., Charles C., MacFall J., Rosner G., Samulski T., Gillette E., LaRue S.. “Hyperthermic Treatment of Malignant Diseases: Current Status and a View Toward the Future.”  Seminars in Oncology. 24 1997;  616-625
  • 02 Urano M., Douple E.. (Eds.) Hyperthermia and Oncology. Vol. 1. Thermal effects on cells and tissues, VSP BV Utrecht The Netherlands (1988), Vol. 2. Biology of thermal potentiaton of radiotherapy, VSP BV Utrecht The Netherlands, VSP BV Utrecht The Netherlands (1992) (1989), Vol. 3. Interstitial Hyperthermia: Physics, biology and clinical aspects, VSP BV Utrecht The Netherlands (1992), Vol. 4. Chemopotentiation by hyperthermia VSP BV Utrecht The Netherlands (1994), Seegenschmiedt, M.H.; Fessenden, P.; Vernon, C.C. (Eds.) Thermo-radiotherapy and Thermo-chemiotherapy, Vol. 1. Biology, physiology and physics, Springer Verlag, Berlin Heidelberg (1996), Vol. 2. Clinical applications, Springer Verlag, Berlin Heidelberg 1996
  • 03 International Journal of Hyperthermia. (The official Journal of the North American Hyperthermia Society, European Society for Hyperthermic Oncology, Asian Society of Hyperthermic Oncology) Taylor & Francis, ISSN 0265-6736
  • 04 Nielsen O. S., Horsman M., Overgaard J.. A future of hyperthermia in cancer treatment?.  Editorial Comment  European Journal of Cancer. 37 2001;  1587-1589
  • 05 Amichetti M., Romano M., Busana L., Bolner A., Fellin G., Pani G., Tomio L., Valdagni R.. Hyperfractionated radiation in combination with local hyperthermia in the treatment of advanced squamous cell carcinoma of the head and neck: a phase I-II study.  Radiother Oncol. 45 1997;  155-158
  • 06 Emami B., Scott C., Perez C. A., Asbell S., Swift P., Grigsby P., Montesano A., Rubin P., Curran W., Delrowe J., Arastu H., Fu K., Moros E.. Phase III study of interstitial thermoradiotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors.  Int J Radiat Oncol Biol Phys A prospectively controlled randomized study by the Radiation Therapy Group.  34 (5) 1996;  1097-1104
  • 07 Engelhard M., Gerhartz H., Brittinger G., Engert A., Fuchs R., Geiseler B., Gerhartz D., Haunauske A. R., Hartlapp H. J., Huhn D.. et al. . Cytokine efficiency in the treatment of high-grade malignant non-Hodgkin's lymphomas: results of a randomized double-blind placebo-controlled study with intensified COP-BLAM +/- rhGM-CSF.  Ann Oncol Geiseler B. 5 1994;  123-125
  • 08 Hand J. W., Machin D., Vernon C. C., Whaley J. B.. Analysis of thermal parameters obtained during phase III trials of hyperthermia as an adjunct to radiotherapy in the treatment of breast carcinoma.  Int J Hyperthermia. 13 (4) 1997;  343-364
  • 09 Harima Y., Nagata K., Harima K., Ostapenko V. V., Tanaka Y., Sawada S. L.. A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma.  Int J Hyperthermia. 17 (2) 2001;  97-105
  • 10 Harima Y., Nagata K., Harima K., Oka A., Ostapenko V. V., Shikata N., Ohnishi T., Tanaka Y.. Bax and Bcl-2 protein expression following radiation therapy versus radiation plus thermoradiotherapy in stage IIIB cervical carcinoma.  Cancer. 88 (1) 2000;  132-138
  • 11 Kitamura K., Kuwano H., Watanabe M., Nozoe T., Yasuda M., Sumiyoshi K., Saku M., Sugimachi K. J.. Prospective randomized study of hyperthermia combined with chemoradiotherapy for esophageal carcinoma.  Surg Oncol. 60 (1) 1995;  55-58
  • 12 Overgaard J., Gonzales D. D., Hulshof M. C., Arcangeli G., Dahl O., Mella O., Bentzen S. M.. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma.  Lancet European Society for Hyperthermic Oncology  345 (8949) 1995;  540-543
  • 13 Overgaard J., Gonzalez G. D., Hulshof M. C., Arcangeli G., Dahl O., Mella O., Bentzen S. M.. Int Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma.  A multicentre randomized trial by the European Society for Hyperthermic Oncology  J Hyperthermia . 12 (1) 1996;  3-20
  • 14 Rau B., Wust P., Riess H., Schlag P. M.. Radiochemotherapy plus hyperthermia in rectal carcinoma. [Article in German].  Schweiz Rundsch Med Prax. 90 (14) 2001;  587-592
  • 15 Shchepotin I. B., Evans S. R., Chorny V., Osinsky S., Buras R. R., Maligonov P., Shabahang M., Nauta R. J.. Intensive preoperative radiotherapy with local hyperthermia for the treatment of gastric carcinoma.  Surg Oncol. 3 (1) 1994;  37-44
  • 16 Sherar M., Liu F. F., Pintilie M., Levin W., Hunt J., Hill R., Hand J., Vernon C., van Rhoon G., van der Zee J., Gonzalez D. G., van Dijk J., Whaley J., Machin D.. Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial.  Int J Radiat Oncol Biol Phys. 39 (2) 1997;  371-380
  • 17 Sneed P. K., Stauffer P. R., McDermott M. W., Diederich C. J., Lamborn K. R., Prados M. D., Chang S., Weaver K. A., Spry L., Malex M. K., Lamb S. A., Voss B., Davis R. L., ara W. M., Larson D. A., Phillips T. L., Gutin P. H.. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme.  Int J Radiat Oncol Biol Phys. 40 (2) 1998;  287-295
  • 18 Issels R. D., Abdel-Rahman S., Wendtner C.- M., Falk M. H., Kurze V., Sauer H., Aydemir U., Hiddemann W.. Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study.  European Journal of Cancer. 37 2001;  1599-1608
  • 19 gawa S., Tsuliyama I., Watanabe S., Ohno Y., Morita K., Tominaga S., Onoyama Y., Hashimoto S., Yanagawa S., Uehgara S., Abe M., Mochizuli S., Sugiyama A., Inoue T.. A randomized clinical trial of hyperthermia and radiation versus radiation alonefor superfizially located cancers.  J. Jpn,. Soc. Ther. Radiol. Oncol.. 1 1989;  135-140
  • 20 Kodama K., Doi O., Higashiyama M., Yokouchi H., Tatsuda M.. Long term results of postoperative Intrathoratic Chemo-Thermotherapy for Lung cancer with pleural dissemination.  Cancer. 72 1993;  100-106
  • 21 Karasawa K., Muta N., Nakagawa K., Hasezawa K., Terahara A., Onogi Y., Sakata K.- I., Aoki Y., Sasaki Y., Akanuma A.. Thermoradiotherapy in the treatment of locally advanced nonsmall cell lung cancer.  Int. J. Radiol. Oncol. Biol. Phys. 30 1994;  1171-1177
  • 22 Wang J., Li D., Chen N.. Intracavitary microwave hyperthermia combined with external irradiation in the treatment of esophageal cancer. [Article in Chinese].  Zhonghua Zhong Liu Za Zhi. 18 (1) 1996;  51-54
  • 23 van der Zee J., Gonzalez G. D., van Rhoon G. C., van Dijk J. D., van Putten W. L., Hart A. A.. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial.  Dutch Deep Hyperthermia Group  Lancet. 355 (9210) 2000;  1119-1125
  • 24 Song C. W., Choi I. B., Nah B. S., Sahu S. K., Osborn J. L.. Microvasculature and Persfusion in Normal Tissues and Tumors, Thermoradiometry and Thermochemotherapy.  Eds. Seegenschmiedt MH, Fessenden P, Vernon CC  1 1995;  139-156
  • 25 Vaupel P.. Phatophysiological Mechanisms of Hyperthermia in Cancer Therapy. M. Gautherie (ed.), Biological Basis of Oncologic thermotherapy Springer Verlag, Berlin Heidelberg 1990: 73-134
  • 26 Head J. F., Wang F., Lipari C. A., Elliot R. L.. The important role of Infrared Imaging in Breast cancer, IEEE Engineering in Medicine and Biology.  19 2000;  52-57
  • 27 Vaupel P. W., Kelleher D. K.. Metabolic status and reaction to heat of Normal and tumor tissue. Seegenschmiedt MH, Fessenden P, Vernon CC (Eds.) Thermo-radiotherapy and Thermo-chemiotherapy Biology, physiology and physics, Springer Verlag, Berlin Heidelberg 1 1996: 157-176
  • 28 Keszler G., Csapo Z., Spasokoutsakaja T., Sasvary-Szekely M., Virga S., Demeter A., Eriksson S., Staub M.. Hyperthermy increase the phosporylation of deoxycytidine in the membrane phospholipid precursors and decrease its incorporation into DNA.  Adv Exper Med Biol. 486 2000;  33-337
  • 29 Gonzales G. D.. Thermo-radiotherapy for tumors of the lower gastro-instenstinal tract. M.H. Seegenschmiedt, P.Fessenden, C.C.Vernon (Eds.) Thermo-radiotherapy and Thermo-chemiotherapy Biology, physiology and physics, Springer Verlag, Berlin Heidelberg 1 1996: 105-119
  • 30 Dewey W. C., Hopwood L. E., Sapareto S. A., Gerweck L. E.. Cellular Response to Combination of Hyperthermia and Radiation.  Radiology. 123 1977;  463-474
  • 31 Lindholm C.- E.. Hyperthermia and Radiotherapy. Ph.D. Thesis, Lund University, Malmo, Sweden 1992
  • 32 Field S. B.. Biological Aspects of Hyperthermia, Physics and Technology of Hyperthermia. Field SB, Franconi C, (Eds.) NATO ASI Series, E: Applied Sciences Martinus Nijhoff Publ. Dordrecht/Boston 127 1987: 19-53
  • 33 de Pomarai D., Daniels C., David H., Allan J., Duce I., Mutwakil M., Thomas D., Sewell P., Tattersall J., Jones D., Candido P.. Non-thermal heat-shock response to microwaves.  Nature. 405 2000;  417-418
  • 34 Bukau B., Horwich A. L.. The HSP70 and HSP60 chaperone machines.  Cell. 92 1998;  351-366
  • 35 Liu F. F., Bezjak K., Levin W., Cooper B., Pintilie M., Sherar M. D.. Assessment of palliation in women with recurrent breast cancer.  Int J Hyperthermia. 12 1996;  825-826
  • 36 Fajardo L. F., Prionas S. D., Kowalsky J., Kwan H. H.. Hyperthermia Inhibits angiogenesis.  Radiation Research. 114 1988;  297-306
  • 37 Holt J. A. G.. Microwaves are not hyperthermia.  The Radiographer. 35 1988;  151-162
  • 38 Blank M.. Coupling of AC Electric Fields to Cellular Processes. First International Symposium on Nonthermal Medical/Biological Treatments Using Electromagnetic Fields and Ionized Gases, ElectroMed'99, Norfolk VA, USA Symposium Record Abstracts 12-14.April.1999: 23
  • 39 Young R. A.. Stress Proteins and Immunology.  Ann. Rev. Immunology. 8 1990;  401-420
  • 40 Latchmann D. S.. Stress proteins. Springer Verlag, Berlin Heidelberg 1999
  • 41 Soti C., Csermely P.. Molecular Chaperones in the Etiology and Therapy of Cancer.  Pathology and Oncology. 4 1998;  316-321
  • 42 Ferrarini M., Heltai S., Zocchi M. R., Rugarli C.. Unusual Expression and Localization of Heat Shock Proteins in Human Tumor Cells.  Int. Journ. Cancer. 51 1992;  613-619
  • 43 Pia Prott M., Heltai S., Bellone M., Ferrarini M., Manfredi A. A., Rugarli C.. Constitutive Expression of the Heat Shock Protein 72kDa in Human Melanoma Cells.  Cancer Letters. 85 1994;  211-216
  • 44 Gress T. M., Muller-Pillasch F., Weber C., Lerch M. M., Friess H., Buchler M., Berger H. G., Adler G.. Differenctial Expression of Heat Shock Proteins in Pancreatic Carcinoma.  Cancer Research. 54 1994;  547-551
  • 45 Xu M., Wright W. D., Higashikubo R., Roti R. J. L.. Chronic Thermotolerance with Continued Cell Proliferation.  Int. Journal of Hyperthermia. 12 1996;  645-660
  • 46 Li G. C., Mivechi M. F., Weitzel G.. Heat Shock Proteins, Thermotolerance, and their Relevance to Clinical Hyperthermi.  Int. Journal of Hyperthermia. 11 1995;  459-488
  • 47 Pirity M., Hever-Szabo A., Venetianer A.. Overexpression of P-glycoprotein in Heta and/or Drug Resistant Hepatoma Variants.  Cytotechnology. 19 1996;  207-214
  • 48 Santin A. D., Hermonat P. L., Ravaggi A., Chirivainternati M., Hiserodt J. C., Batchu R. B., Pecorelli S., Parham G. P.. The Effects of Irradiation on the Expression of a Tumour Rejection Antigen (Heat Shock Protein GP96) in Human Cervical Cancer.  Int. Radiat. Biol.. 73 1998;  699-704
  • 49 Morgan J., Whitaker J. E., Oseroff A. R.. GRP78 Induction by Calcium Ionophore Potentiates Photodynamic Therapy Using the Mitochondrial Targeting Dye Victoria Blue BO.  Photocem. Photobiol. 67 1998;  155-164
  • 50 Punyiczki M., Fesus L.. Heat Shock and Apoptosis: The Two Defense Systems of the Organisms May Have Overlapping Molecular Elements.  Ann. New York Acad. Sci. 851 1998;  67-74
  • 51 Huot J., Roy G., Lambert H., Landry J.. Co-induction of HSP27 Phosphorylation and Drug Resistance in Chinese Hamster Cells.  Inter. J. Oncology. 1 1992;  31-36
  • 52 Goodman R., Blank M.. The induction of stress proteins for cytoprotection in clinical applications. First International Symposium on Nonthermal Medical/Biological Treatments Using Electromagnetic Fields and Ionized Gases, ElectroMed'99, Norfolk VA, USA Symposium Record Abstracts 12-14.April.1999: 57
  • 53 Sapozhnikov A. M., Ponomarev E. D., Tarashenko T. N., Telford W. G.. Spontaneous apoptosis and expression of cell-surface het-shock proteins in cultured EL-4 lymphoma cells.  Cell Proliferation. 32 1999;  363-378
  • 54 Hupp T. R., Meek D. W., Midgley C. A., Lane D. P.. Regulation of the Specific DNA Binding Function of p53.  Cell. 71 1992;  875-886
  • 55 Chen C. F., Chen Y., Dai K., hen P. L., Riley D. J., Lee W. H.. A New Member of the HSP90 Family of Molecular Chaperones Interacts with the Retinoblastoma Protein During Mitosis and After Heat Shock.  Molec. Cell. Biol. 16 1996;  4691-4699
  • 56 Schweighoffer T.. Tumor Cells Expressing a Recall Antigen are Powerful Cancer Vaccines.  Europ. J. Immunol.. 26 1996;  2559-2564
  • 57 Seegenschmiedt M. H., Vernon C. C.. A Historical Perspective on Hyperthermia in Oncology. In: Thermoradiotherapy and Thermochemotherapy, Eds. Seegenschmiedt M.H.; Fessenden, P.; Vernon, C.C.: Clinical Applications, Springer Verlag, Berlin 2 1995: 3-46
  • 58 Lin H., Head M., Blank M., Han L., Jin M., Goodmann R.. Myc-Mediated transactivation of HSP70 expression following explosure to magnetic fields.  J. Cell. Biochem.. 69 1998;  181-188 Lin H., Blank M., Goodmann R.. A magnetic field-responsive domain in the human HSP70 promoter.  J Cell Biochem.. 75 1999;  170-176
  • 59 Smith S. R., Foster K. R., Wolf G. L.. Dielectric Properties of VX-2 Carcinoma Versus Normal Liver Tissue.  IEEE Trans. Biomed. Eng. BME-. 33 1986;  522-524
  • 60 Dissado L. A., Alison J. M., Hill R. M., McRae D. A., Esrick M. A.. Dynamic Scaling in the Dielectric Response of Excised EMT-6 Tumours Undergoing Hyperthermia.  Phys. Med. Biol.. 40 1995;  1067-1084
  • 61 Szent-Gyorgyi A.. Electronic Biology and Cancer. Marcel Dekker, New York - Basel 1976
  • 62 Cope F. W.. J. Biol. Phys.. 3 1974;  1-41
  • 63 Damadian R.. Science. 1971;  1151-1153
  • 64 Hazlewood C. F.. Nature. 222 1969;  747-750
  • 65 Szent-Gyorgyi A.. The Living State and Cancer. Marcel Dekker, New York - Basel 1976
  • 66 DelGiudice E., Doglia S., Milani M., Vittiello G.. Electromagnetic Field and Spontaneous Symmetry Breaking in Biological Matter.  Nuclear Physics. B275, [FS17] 1986;  185-199
  • 67 DelGiudice E., Doglia S., Milani M.. Self-focusing and Ponderomotive Forces of Coherent Electric Waves: A Mechanism for Cytoskeleton Formation and Dynamics. In: Coherent Excitations in Biological Systems, Eds: Frohlich, H.; Kramer, F. Springer Verlag, Berlin - Heidelberg 1983: 123-127
  • 68 DelGiudice E., Doglia S., Milani M.. Self-Focusing of Frohlich Waves and Cytoskeleton Dynamics.  Physics Letters. 90A 1982;  104-106
  • 69 Vincze G., Szendro P., Szasz A.. Heat penetration to the cell-membrane. in preparation 2001
  • 70 Galeotti T., Borrello S., Minotti G., Masotti L.. Membrane Alterations in Cancer Cells: the role of Oxy Radicals.  Membrane Pathology, Bianchi G, Carafoli E, Scarpa A, (Eds.)  An. New York Acad. Sci.. 488 1986;  468-480
  • 71 Srivastava P. K., DeLeo A. B., Old L. J.. Tumor Rejection Antigens of Chemically Induced Tumors of Inbred Mice.  Proc. Natl. Acad. Sci. USA. 83 1986;  3404-3411
  • 72 Csermely P., Schnaider T., Soti C., Prohaszka Z., Nardai G.. The 90 kDa Molecular Chaperone Family: Structure, Function and Clinical Applications.  A Comprehensive Review  Pharmacol Therapeutics. 79 1998;  129-168
  • 73 Kuroita T., Tachibana H., Ohashi H., Shirahata S., Murakami H.. Growth Stimulating Activity of Heat Shock Protein 90 α to Lymphoid Cell Lines in Serum Free Medium.  Cytotechnology. 8 1992;  109-117
  • 74 Srivastava P. K.. Endo-β-D-Glucurodinase (Heparanase) Activity of Heat Shock Protein/Tumor Rejection Antigen GP96.  Biochem J.. 301 1994;  918
  • 75 Udono H., Srivastava P. K.. Heat Shock Protein-Peptide Complexes.  Reconstructed in vitro, Elicit Peptide-Specific Cytotoxic T Lymphocyte Response and Tumor Immunity  J. Exper. Med.. 186 1997;  1315-1322

Correspondence to:

Prof. Dr. A. Szasz

Szent Istvan krt.20

Budapest, H-1137

Hungary

Email: profszasz@oncotherm.org

    >