Horm Metab Res 2001; 33(11): 631-638
DOI: 10.1055/s-2001-18687
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Role of Three FKHR Phosphorylation Sites in Insulin Inhibition of FKHR Action in Hepatocytes

A. O. Scheimann 1 , S. K. Durham 1, 2 , A. Suwanichkul 1 , M. B. Snuggs 3 , D. R. Powell 1, 4
  • 1 Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
  • 2 Diagnostic Systems Laboratories, Webster, Texas, USA
  • 3 Department of Pathology, University of Texas Health Science Center, Houston, Texas, USA
  • 4 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
Further Information

Publication History

Publication Date:
04 December 2001 (online)

Insulin inhibits insulin-like growth factor binding protein-1 (IGFBP-1) transcription by preventing FKHR protein family members from binding a specific insulin response element in the IGFBP-1 promoter. In most cells, three serine/threonine moieties in FKHR family members are phosphorylated after insulin treatment or protein kinase B/Akt (PKB) transfection, and each of the three phosphorylated PKB sites contributes to insulin- or PKB-mediated inhibition of both the action and the nuclear localization of FKHR family members. In hepatocytes, however, the middle PKB site (PKB2) of FKHR was required for insulin to phosphorylate FKHR and was the only PKB site that participated in insulin inhibition of FKHR action, indicating that insulin utilizes a unique pathway to regulate FKHR action in hepatocytes. In studies presented here, plasmids expressing native or mutant FKHR forms, either with or without N-terminal fusion to green fluorescent protein (GFP), were transiently transfected into HEP G2 cells. All FKHR forms stimulated IGFBP-1 promoter activity, and mutating any of the three FKHR PKB sites impaired the ability of insulin both to inhibit FKHR-stimulated IGFBP-1 promoter activity and to induce FKHR accumulation in cytoplasm. Thus, in hepatocytes as in other cell lines, all three FKHR PKB sites participate in insulin-mediated inhibition of FKHR action and in insulin-mediated accumulation of FKHR in cytoplasm.

References

  • 1 O’Brien R M, Lucas P C, Forest C D, Magnuson M A, Granner D K. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription.  Science. 1990;  249 533-537
  • 2 Suwanichkul A, Morris S L, Powell D R. Identification of an insulin-responsive element in the promoter of the human gene for insulin-like growth factor binding protein-1.  J Biol Chem. 1993;  268 9730-9736
  • 3 Lee P DK, Giudice L C, Conover C A, Powell D R. Insulin-like growth factor binding protein-1: Recent findings and new directions.  Proc Soc Exp Biol Med. 1997;  216 319-357
  • 4 Streeper R S, Svitek C A, Chapman S, Greenbaum L E, Taub R, O’Brien R M. A multi-component insulin response sequence mediates a strong repression of mouse glucose-6 phosphatase gene transcription by insulin.  J Biol Chem. 1997;  272 11 698-11 701
  • 5 Ganss R, Weih F, Schutz G. The cyclic adenosine 3’,5’-monophosphate- and the glucocorticoid-dependent enhancers are targets for insulin repression of tyrosine aminotransferase gene transcription.  Mol Endocrinol. 1994;  8 895-900
  • 6 O’Brien R M, Granner D K. Regulation of gene expression by insulin.  Physiological Rev. 1996;  76 1109-1161
  • 7 Taylor S I, Accili D, Imai Y. Insulin resistance or insulin deficiency. Which is the real cause of NIDDM?.  Diabetes. 1994;  43 735-740
  • 8 Cohen P, Alessi D R, Cross A E. PDKl, one of the missing links in insulin signal transduction?.  FEBS Lett. 1997;  410 3-10
  • 9 Alessi D R, Caudwell F B, Andjeclovic M, Hemmings B A, Cohen P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase.  FEBS Lett. 1996;  399 333-338
  • 10 Cichy S B, Uddin S, Danilkovich A, Guo S, Klippel A, Unterman T G. Protein kinase B/Akt mediates effects of insulin on hepatic insulin-like growth factor-binding protein-1 gene expression through a conserved insulin reponse sequence.  J Biol Chem. 1998;  273 6482-6487
  • 11 Ogg S, Paradis S, Gottlieb S, Patterson G I, Lee L, Tissenbaum H A, Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans.  Nature. 1997;  389 994-999
  • 12 Lin K, Dorman J B, Rodan A, Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life span of Caenorhabditis elegans.  Science. 1997;  278 1319-1322
  • 13 Paradis S, Ruvkun G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor.  Genes Dev. 1998;  12 2488-2498
  • 14 Galili N, Davis R J, Fredericks W J, Mukhopadhyay S, Rauscher FJ I II, Emanuel B S, Rovera G, Barr F G. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma.  Nature Genet. 1993;  5 230-235
  • 15 Anderson M J, Viars C S, Czekay S, Cavenee W K, Arden K C. Cloning and characterization of the three human forkhead genes that comprise an FKHR-like gene subfamily.  Genomics. 1998;  47 187-199
  • 16 Borkhardt A, Repp R, Haas O A, Leis T, Harbott J, Kreuder J, Hammermann J, Henn T, Lampert F. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;ll)(q13;q23).  Oncogene. 1997;  14 195-202
  • 17 Biggs WH I II, Meisenhelder J, Hunter T, Cavenee W K, Arden K C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1.  Proc Natl Acad Sci USA. 1999;  96 7421-7426
  • 18 Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor binding protein-1 promoter activity through a conserved insulin response sequence.  J Biol Chem. 1999;  274 17 184-17 192
  • 19 Durham S K, Suwanichkul A, Scheimann A O, Yee D, Jackson J G, Barr F G, Powell D R. FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter.  Endocrinology. 1999;  140 3140-3146
  • 20 Brunet A, Bonni A, Zigmond M J, Lin M Z, Juo P, Hu L S, Anderson M J, Arden K C, Blenis J, Greenberg M E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor.  Cell. 1999;  96 857-868
  • 21 Kops G JPL, de Ruiter N D, De Vries-Smits A MM, Powell D R, Bos J L, Burgering B MT. Direct control of the forkhead protein AFX by protein kinase B.  Nature. 1999;  398 630-634
  • 22 Tang E D, Nunez G, Barr F G, Guan K -L. Negative regulation of the Forkhead transcription factor FKHR by Akt.  J Biol Chem. 1999;  274 16 741-16 746
  • 23 Ayala J E, Streeper R S, Desgrosellier J S, Durham S K, Suwanichkul A, Svitek C A, Goldman J K, Barr F G, Powell D R, O’Brien R M. Conservation of an insulin response unit between the mouse and human glucose-6-phosphatase catalytic subunit gene promoters.  Diabetes. 1999;  48 1885-1889
  • 24 Nakae J, Park B -C, Accili D. Insulin stimulates phosphorylation of the Forkhead transcription factor FKHR on Serine 253 through a Wortmannin-sensitive pathway.  J Biol Chem. 1999;  274 15 982-15 985
  • 25 Rena G, Guo S, Cichy S C, Unterman T G, Cohen P. Phosphorylation of the transcription factor Forkhead family member FKHR by protein kinase B.  J Biol Chem. 1999;  274 17 179-17 183
  • 26 Nakae J, Barr V, Accili D. Differential regulation of gene expression by insulin and IGF-I receptors correlates with phosphorylation of a single amino acid residue in the forkhead transcription factor FKHR.  EMBO J. 2000;  19 989-996
  • 27 Tomizawa M, Kumar A, Perrot V, Nakae J, Accili D, Rechler M M. Insulin inhibits the activation of transcription of a C-terminal fragment of the forkhead transcription factor FKHR.  J Biol Chem. 2000;  275 7289-7295
  • 28 Takaishi H, Konishi H, Matsuzaki H, Ono Y, Shirai Y, Saito N, Kitamura T, Ogawa W, Kasuga M, Kikkawa U, Nishizuka Y. Regulation of nuclear translocation of Forkhead transcription factor AFX by protein kinase B.  Proc Natl Acad Sci USA. 1999;  96 11 836-11 841
  • 29 Suwanichkul A, Cubbage M L, Powell D R. The promoter of the human gene for insulin-like growth factor binding protein-1: Basal promoter activity in HEP G2 cells depends upon liver factor B-l.  J Biol Chem. 1990;  265 21 185-21 193
  • 30 Allander S V, Durham S K, Scheimann A O, Wasserman R M, Suwanichkul A, Powell D R. HMGI/Y and HNF3 proteins bind the insulin response element of the IGFBP-1 promoter.  Endocrinology. 1997;  138 4291-4300
  • 31 O’Brien R M, Noisin E L, Suwanichkul A, Yamasaki T, Lucas P C, Wang J -C, Powell D R, Granner D K. Hepatic nuclear factor-3 and hormone regulated expression of the PEPCK and IGFBP-1 genes.  Mol Cell Biol. 1995;  15 1747-1758
  • 32 Laughon A, Gesteland R F. Identification of two proteins encoded by the Saccharomyces cerevisiae GAL4 gene.  Mol Cell Biol. 1984;  4 260-267
  • 33 de Wet J R, Wood K V, de Luca M, Helinski D R, Subramani S. Firefly luciferase gene: Structure and expression in mammalian cells.  Mol Cell Biol. 1987;  7 725-737
  • 34 Gorman C M, Moffat L F, Howard B H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells.  Mol Cell Biol. 1982;  2 1044-1051
  • 35 Heimer G V, Taylor C ED. Improved mountant for immunofluorescence preparations.  J Clin Pathol. 1974;  27 254-256
  • 36 Campbell P G, Durham S K, Suwanichkul A, Hayes J D, Powell D R. Plasminogen binds the heparin binding domain of insulin-like growth factor binding protein-3.  Am J Physiol. 1998;  275 E321-E331
  • 37 Liao J, Barthel A, Nakatani K, Roth R A. Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene.  J Biol Chem. 1998;  273 27 320-27 324
  • 38 Yaffe M B, Rittinger K, Volinia S, Caron P R, Aitken A, Leffers H, Gamblin S J, Smerdon S J, Cantley L C. The structural basis for 14 - 3-3:phosphopeptide binding specificity.  Cell. 1997;  91 961-971
  • 39 Boston P F, Jackson P, Thompson R J. Human 14 - 3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders.  J Neurochem. 1982;  38 1475-1482
  • 40 Ku N -O, Liao J, Omary M B. Phosphorylation of human keratin 18 serine 33 regulates binding to 14 - 3-3 proteins.  EMBO J. 1998;  17 1892-1906
  • 41 Kanamaru K, Wang R, Su W, Crawford N M. Ser-534 in the hinge 1 region of Arabidopsis nitrate reductase is conditionally required for binding of 14 - 3-3 proteins and in vitro inhibition.  J Biol Chem. 1999;  274 4160-4165

Dr. David R. Powell

Lexicon Genetics, Incorporated

4000 Research Forest Drive
The Woodlands
Texas 77381-4287
USA


Phone: + 1 (281) 863-3060

Fax: + 1 (281) 419-9125

Email: dpowell@lexgen.com