Viszeralchirurgie 2001; 36(6): 402-408
DOI: 10.1055/s-2001-18012
ORIGINALARBEIT
© Georg Thieme Verlag Stuttgart · New York

Neue Aspekte der postoperativen Darmatonie[*]

New aspects of postoperative ileusN. T. Schwarz1 , A. Türler1 , A. J. Bauer2 , A. Hirner1 , J. C. Kalff1
  • 1Klinik und Poliklinik für Allgemein-, Viszeral-, Thorax- und Gefäßchirurgie, Rheinische Friedrich-Wilhelms-Universität Bonn
  • 2Department of Medicine/Gastroenterology, University of Pittsburgh, PA. U.S.A.
Further Information

Publication History

Publication Date:
26 October 2001 (online)

Zusammenfassung.

Darmfunktionsstörungen zählen zu den häufigsten Komplikationen nach chirurgischen Eingriffen. Verschiedene, zum Teil kontroverse Theorien über die zugrunde liegenden Pathomechanismen wurden entwickelt, ohne dass die Pathogenese bisher geklärt werden konnte. Wir konnten nachweisen, dass es nach chirurgischer Manipulation des Darmes zu einer massiven zellulären Entzündungsreaktion innerhalb der intestinalen Tunica muscularis kommt. Im Rahmen dieser Entzündung kommt es frühzeitig zur Aktivierung residenter Muscularis-Makrophagen. Diese Aktivierung wird von einer frühen, passageren Muskelfunktionshemmung begleitet. Im weiteren Entzündungsgeschehen exprimieren die Muscularis-Makrophagen proinflammatorische Zytokine (u. a. IL-1β, IL-6 und TNF-α), aktivieren Transkriptionsfaktoren (STAT, NF-κB) und führen zu einer lokalen Aufregulierung von Adhäsionsmolekülen (u. a. ICAM-1, P-Selectin, LFA-1) in der Muscularis. Die nachfolgende Rekrutierung leukozytärer Entzündungszellen geht einher mit einer längerfristigen Einschränkung der Muskelfunktion. Induzierbares Stickstoffmonoxid und Prostaglandine unterstützen die Muskelinhibition. Die selektive Blockade von induzierbarer Stickstoffmonoxid-Synthase (iNOS) oder Cyclooxygenase-2 (COX-2) führt zu einer signifikanten Reduktion der lokalen Entzündungsreaktion und einer Verbesserung der Muskelfunktion. Zusammenfassend wurden neue Mechanismen in der Entstehung postoperativer muskulärer Darmfunktionsstörungen nachgewiesen, bei welchen den residenten Makrophagen der Darmmuscularis und den induzierbaren Synthasen iNOS und COX-2 zentrale Rollen zukommen.

New aspects of postoperative ileus.

Postoperative ileus typically appears after abdominal surgery. Until now there are no conclusive theories for the pathogenesis of postoperative intestinal dysmotility. Recent investigations have studied early and late mechanisms leading to postoperative ileus by focussing on the circular muscularis externa layer of the intestinal wall. We were able to demonstrate that manipulation of the intestine caused a massive cellular inflammation within the intestinal muscle layer. This inflammatory response is preceded by the very early activation of resident macrophages within the circular intestinal muscle, which is accompanied by an early suppression of smooth muscle contractility. Muscularis macrophages express an array of various cytokines (IL-1β, IL-6 und TNF-α), transcription factors (STAT, NF-κB) and adhesion molecules (ICAM-1, P-Selectin, LFA-1). The subsequent recruitment of leukocytes is followed by a more sustained suppression of intestinal muscle contractility, which is mediated by NO and prostaglandins. The selective inhibition of iNOS and COX-2 helped to reduce the local inflammation significantly within the intestinal muscularis as well as the postoperative suppression of the muscle contractility. In summary we have shown new mechanisms responsible for postoperative ileus, in which resident muscularis macrophages as well as iNOS and COX-2 play a key role.

1 Herrn Prof. H.-D. Röher zum 65. Geburtstag gewidmet.Die Arbeit wurde durch folgende Stipendien gefördert:
Schw 745/1-1 und Ka 1270/1-1 der DFG, sowie BONFOR 0-112.0006.

Literatur

  • 1 Kalff J C, Schraut W H, Simmons R L, Bauer A J. Surgical manipulation of the gut elicits and intestinal muscularis inflammatory response resulting in postsurgical ileus.  Annals of Surgery. 1998;  228 652-663
  • 2 Livingston E H, Passaro EP E P. Postoperative ileus.  Digestive Diseases & Sciences. 1990;  35 121-132
  • 3 Holte K, Kehlet H. Postoperative ileus: a preventable event. [Review] [129 refs].  British Journal of Surgery. 2000;  87 1480-1493
  • 4 Pal J. Über den Einfluss des Bauchschnittes auf die Darmbewegung.  Zentralblatt Physiologie. 1890;  4 338
  • 5 Condon R E, Cowles V E, Ferraz A A. et al . Human colonic smooth muscle electrical activity during and after recovery from postoperative ileus.  American Journal of Physiology. 1995;  269 G 408-G 417
  • 6 Dubois A, Weise V K, Kopin I J. Postoperative ileus in the rat: physiopathology, etiology and treatment.  Annals of Surgery. 1973;  178 781-786
  • 7 Graber J N, Schulte W J, Condon R E, Cowles V E. Relationship of duration of postoperative ileus to extent and site of operative dissection.  Surgery. 1982;  92 87-92
  • 8 Barquist E, Bonaz B, Martinez V, Rivier J, Zinner M J, Tache Y. Neuronal pathways involved in abdominal surgery-induced gastric ileus in rats.  American Journal of Physiology. 1996;  270 R 888-R 894
  • 9 Tache Y, Monnikes H, Bonaz B, Rivier J. Role of CRF in stress-related alterations of gastric and colonic motor function.  Ann NY Acad Sci. 1993;  697 233-243
  • 10 Mayer E A, Raybould H, Koelbel C. Neuropeptides, inflammation, and motility.  Digestive Diseases & Sciences. 1988;  33 71 S-77 S
  • 11 Goltz F. Studien über die Bewegungen der Speiseröhre und des Magens des Frosches.  Pflugers Archiv - European Journal of Physiology. 1872;  6 616-642
  • 12 Bayliss W M, Starling E H. The movements and innervations of the small intestine.  Journal of Physiology (Lond). 1899;  31 272-304
  • 13 Cannon W B, Murphy F T. The movement of the stomach and intestine in some surgical conditions.  Annals of Surgery. 1906;  43 512-536
  • 14 Arai K. Experimentelle Untersuchungen über die Magen-Darmbewegungen bei akuter Peritonitis.  Arch Exp Path Pharmakol. 1922;  94 149-189
  • 15 King C E. Studies on intestinal inhibitory reflexes.  American Journal of Physiology. 1924;  70 183-193
  • 16 Hotz G. Beiträge zur Pathologie der Darmbewegungen.  Grenzgeb Med Chir. 1909;  20 257-318
  • 17 Wagner G A. Zur Behandlung des Ileus mit Lumbal-Anästhesie.  Arch Gynäkol. 1922;  117 336
  • 18 Bisgard J D, Matson G M, Hirschmann J. Adynamic ileus and thermal influences on gastric and intestinal motor activity.  JAMA. 1942;  118 447-451
  • 19 Lapointe M A. La rachianesthésie dans l'iléus aigu.  Bull Mem Soc Natl Chir. 1927;  53 474-478
  • 20 Wallin G, Cassuto J, Hogstrom S, Rimback G, Faxen A. Failure of epidural anesthesia to prevent postoperative paralytic ileus.  Anesthesiology. 1986;  65 292-297
  • 21 Wagner G A. Behandlung des paralytischen Ileus.  Berl Klin Wochenschr. 1919;  56 1221-1222
  • 22 Baker L W, Webster D R. Postoperative intestinal motility: an experimental study on dogs.  Brit J Surg. 1968;  55 374-378
  • 23 Dahlgren S, Selking O. Postoperative motility of the small intestine.  Uppsala J Med Sci. 1972;  77 202-204
  • 24 Bueno L, Ferre J P, Ruckebusch Y. Effects of anesthesia and surgical procedures on intestinal myoelectric activity in rats.  Digestive Diseases & Sciences. 1978;  23 690-695
  • 25 Carmichael M J, Weisbrodt N W, Copeland E M. Effect of abdominal surgery on intestinal myoelectric activity in the dog.  Am J Surg. 1977;  133 34-38
  • 26 Schippers E, Bollschweiler E, Siewert R. Return of interdigestive motor complex after abdominal surgery. End of postoperative ileus?.  Digestive Diseases & Sciences. 1991;  36 621-626
  • 27 Rothnie N G, Harper R AK, Catchpole B N. Early postoperative gastrointestinal activity.  Lancet. 1963;  2 64-67
  • 28 Wells C, Rawlinson K, Tinckler L, Jones H. Postoperative gastrointestinal motility.  Lancet. 1964;  1 4-10
  • 29 Condon R E, Cowles V E, Schulte W J, Frantzides C T, Mahoney J L, Sarna S K. Resolution of postoperative ileus in humans.  Annals of Surgery. 1986;  203 574-581
  • 30 Reissman P, Agachan F, Wexner S D. Outcome of laparoscopic colorectal surgery in older patients.  Am Surgeon. 1996;  62 1060-1063
  • 31 Woods J H, Erickson L W, Condon R E, Schulte W J, Sillin L F. Postoperative ileus: a colonic problem?.  Surgery. 1978;  84 527-533
  • 32 Yokoyama T, Kitazawa T, Takasaki K, Ishii A, Karasawa A. Recovery of gastrointestinal motility from post-operative ileus in dogs: effects of leu13 - motilin (KW-5139) and prostaglandin F2α.  Neurogastroenterol Mot. 1995;  7 199-210
  • 33 Dubois F, Icard P, Berthelot G, Levard H. Coelioscopic cholecystectomy: preliminary report of 36 cases.  Annals of Surgery. 1990;  211 60-62
  • 34 Böhm B, Milsom J W, Fazio V W. Postoperative intestinal motility following conventional and laparoscopic intestinal surgery.  Arch Surg. 1995;  130 415-419
  • 35 Garcia-Caballero M, Vara-Thornbeck C. The evolution of postoperative ileus after laparoscopic cholecystectomy.  Surg Endosc. 1993;  7 416-419
  • 36 Tittel A, Schippers E, Anurov M, Titkova S, Ottinger A, Schumpelick V. Minor abdominal trauma by laparoscopic surgery? Comparison of adhesion formation and intestinal motility after laparoscopic and conventional operations in the dog.  Zentralbl Chir. 1996;  121 329-334
  • 37 Plourde V, Wong H C, Walsh J H, Raybould H E, Tache Y. CGRP antagonists and capsica on celiac ganglia partly prevent postoperative gastric ileus.  Peptides. 1993;  14 1225-1229
  • 38 De Winter B Y, Boeckxstaens G E, De Man J G, Moreels T G, Herman A G, Pelckmans P A. Effect of adrenergic and nitrergic blockade on experimental ileus in rats.  Brit J Pharmacol. 1997;  120 464-468
  • 39 Eskandari M K, Kalff J C, Billiar T R, Lee K K, Bauer A J. Lipopolysaccharide activates the muscularis macrophage network and suppresses circular smooth muscle activity.  American Journal of Physiology. 1997;  273 G 727-G 734
  • 40 Hierholzer C, Kalff J C, Audolfsson G, Billiar T R, Tweardy D J, Bauer A J. Molecular and functional contractile sequelae of rat intestinal ischemia/reperfusion injury.  Transplantation. 1999;  68 1244-1254
  • 41 Hierholzer C, Kalff J C, Chakraborty A. et al . Impaired gut contractility following hemorrhagic shock is accompanied by IL-6 and G-CSF production and neutrophil infiltration.  Digestive Diseases & Sciences. 2001;  46 230-241
  • 42 Kalff J C, Carlos T M, Schraut W H, Billiar T R, Simmons R L, Bauer A J. Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus [see comments].  Gastroenterology. 1999;  117 378-387
  • 43 Kalff J C, Buchholz B M, Eskandari M K. et al . Biphasic response to gut manipulation and temporal correlation of cellular infiltrates and muscle dysfunction in rat.  Surgery. 1999;  126 498-509
  • 44 Kalff J C, Hierholzer C, Tsukada K, Biliar T R, Bauer A J. Adhesion molecule (ICAM-1) mediated neutrophil recruitment impairs intestinal muscle function in hemorrhagic shock.  Shock. 1999;  7 45
  • 45 Stadnyk A W, Befus A D, Gauldie J. Characterization of nonspecific esterase activity in macrophages and intestinal epithelium of the rat.  J Histochem Cytochem. 1990;  38 1-6
  • 46 Kalff J C, Schwarz N T, Walgenbach K J, Schraut W H, Bauer A J. Leukocytes of the intestinal muscularis: their phenotype and isolation.  J Leukoc Biol. 1998;  63 683-691
  • 47 Kalff J C, Schraut W H, Billiar T R, Simmons R L, Bauer A J. Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents.  Gastroenterology. 2000;  118 316-327
  • 48 Schwarz N T, Kalff J C, Tuerler A. et al .Prostanoid production via COX-2 as a causative mechanism of rodent postoperative ileus. Gastroenterology; in press 2001
  • 49 Kalff J C, Hierholzer C, Tsukada K, Billiar T R, Bauer A J. Hemorrhagic shock results in intestinal muscularis intercellular adhesion molecule (ICAM-1) expression, neutrophil infiltration, and smooth muscle dysfunction.  Arch Orthop Trauma Surg. 1999;  119 89-93
  • 50 Bauer A J, Martin J A, Kalff J C, Lee K KW, Medich D S, Schraut W H. Human intestinal circular muscle is inhibited by prostanoids secreted from resident muscularis macrophages activated with microbial enterotoxins.  Digestive Diseases & Sciences. 1996;  41 1902
  • 51 Billiar T R. Nitric oxide - novel biology with clinical relevance.  Annals of Surgery. 1995;  221 339-349
  • 52 Stuehr D J, Nathan C F. Nitric oxide: a macrophage product responsible for cytostasis and respiration inhibition in tumor target cells.  J Exp Med. 1989;  169 1543-1555
  • 53 Stark M B, Bauer A J, Sarr M G, Szurszewski J H. Nitric oxide mediates inhibitory nerve input in human and canine jejunum.  Gastroenterology. 1993;  104 398-409
  • 54 Sanders K M. Endogenous prostaglandin E and contractile activity of isolated ileal smooth muscle.  American Journal of Physiology. 1978;  234 E 209-E 212
  • 55 Appleby S B, Ristimaki A, Neilson K, Narko K, HLA T. Structure of the human cyclo-oxygenase-2 gene.  Biochemical Journal. 1994;  302 723-727
  • 56 Feng L, Sun W, Xia Y. et al . Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression.   Archives of Biochemistry and Biophysics. 1993;  307 361-368
  • 57 Cohn S M, Schloemann S, Iessner T, Seibert K, Stenson W F. Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1.  J Clin Invest. 1997;  99 1367-1379
  • 58 Langenbach R, Morham S G, Tiano H F. et al . Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration.  Cell. 1995;  83 483-492
  • 59 Liu S F, Newton R, Evans T W, Barnes P J. Differential regulation of cyclo-oxygenase-1 and cyclo-oxygenase-2 gene expression by lipopolysaccharide treatment in vivo in the rat.  Clin Sci. 1996;  90 301-306
  • 60 Vane J R, Mitchell J A, Appleton I. et al . Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation.  Proc Natl Acad Sci. 1994;  91 2046-2050
  • 61 Dinchuk J E, Car B D, Focht R J. et al . Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase.  Nature. 1995;  378 406-409
  • 62 Lim H, Paria B C, Das S K. et al . Multiple female reproductive failures in cyclooxygenase-2-deficient mice.  Cell. 1997;  97 197-208
  • 63 Masferrer J L, Zweifel B S, Manning P T. Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and non-ulcerogenic.  Proc Natl Acad Sci. 1994;  91 3228-3232
  • 64 Kargman S, Charleson S, Cartwright M. et al . Characterization of prostaglandin G/H synthase 1 and 2 in rat, dog, monkey and human gastrointestinal tracts.  Gastroenterology. 1996;  111 445-454
  • 65 Fu J, Masferrer J L, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes.  J Clin Invest. 1990;  86 1375-1379
  • 66 DuBois R N, Abramson S B, Crofford L. et al . Cyclooxygenase in biology and disease.  FASEB J. 1998;  12 1063-1073
  • 67 Williams J A, Shacter E. Regulation of macrophage cytokine production by prostaglandin E2. Distinct roles of cyclooxygenase-1 and -2.  J Biol Chem. 1997;  272 25693-25699
  • 68 Bruch H P. Ileus-Krankheit.  Chirurg. 1989;  60 198-202

1 Herrn Prof. H.-D. Röher zum 65. Geburtstag gewidmet.Die Arbeit wurde durch folgende Stipendien gefördert:
Schw 745/1-1 und Ka 1270/1-1 der DFG, sowie BONFOR 0-112.0006.

Priv.-Doz. Dr. med. Jörg C. Kalff

Klinik und Poliklinik für Allgemein-, Viszeral-,
Thorax- und Gefäßchirurgie der Universität Bonn

Sigmund-Freud-Straße 25

53105 Bonn

Phone: 0228/ 287-4340

Fax: 0228/ 287-5137

Email: kalff@uni-bonn.de