Horm Metab Res 2001; 33(10): 577-584
DOI: 10.1055/s-2001-17903
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Co-Administration of Etomoxir and RU-486 Mitigates Insulin Resistance in Hepatic and Muscular Tissues of STZ-Induced Diabetic Rats

M. S. Bitar
  • Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, Kuwait
Further Information

Publication History

Publication Date:
18 October 2001 (online)

Insulin resistance is a condition of central importance in a cluster of clinical disorders including diabetes mellitus, hypertension, dyslipidemia, central obesity and coronary heart disease. Despite its association with numerous health problems, the mechanism responsible for the development of this phenomenon remains to be established. A novel theory has proposed that insulin resistance in diabetes stems, at least in part, from enhanced free fatty acid (FFA) oxidation and/or excessive production of glucocorticoids (GCs). Several key predictions of this premise were subjected to experimental testing using streptozotocin (STZ)-treated rats as a model for insulin-dependent diabetes mellitus and euglycemic-hyperinsulinemic clamp technique for the in vivo measurement of insulin actions. Euglycemic clamp studies with an insulin infusion index of 5 mU/kg/min were used to measure endogenous glucose production (EGP), glucose infusion rate (GIR), glucose disposal rate (GDR) and skeletal muscle glucose utilization index (GUI). Post-absorptive basal EGP and plasma levels of glucose and free fatty acids (FFA) were elevated in the STZ diabetic rats compared to their corresponding control values. In contrast, hypoinsulinemia was evident in these animals. Steady-state GIR and GDR during euglycemic-hyperinsulinemic clamp were markedly decreased in the STZ diabetic rats. Similarly, insulin-mediated suppression of EGP and plasma FFA concentration was also impaired in these animals. GUI, a measure of 2-deoxyglucose (2-DG) uptake, was increased in response to insulin in the order of white gastrocnemus (WG), red gastrocnemus (RG), extensor digitorum longus and soleus muscles. This parallels the percentage of red fibers in these muscles. Diabetes interferes with insulin’s ability to increase 2-DG uptake in all of the above muscles with the exception of WG. Nullification of the associated hyperlipidemic and hypercortisolemic states of diabetes with etomoxir (hyperlipidemic) and the glucocorticoid receptor blocker RU-486 (hypercortisolemic) ameliorated the diabetes-related impairment of the in vivo insulin action. Overall these results together with those garnered from the literature support the notion that hypercortisolemia and the enhancement of FFA oxidation are involved, at least in part, in the development of hepatic and skeletal muscle insulin resistance in poorly controlled type I diabetes.

References

  • 1 Blondel O, Portha B. Early appearance of in vivo insulin resistance in adult streptozotocin - induced diabetic rats.  Am J Physiol. 1989;  256 E624-E650
  • 2 Koopmans S J, De Boer S F, Sips H CM, Radder J K, Frolich M, Krans H MJ. Whole body and hepatic insulin action in normal, starved and diabetic rats.  Am J Physiol. 1991;  260 E825-E832
  • 3 Youn J H, Kim J K, Buchanan T A. Time courses of changes in hepatic and skeletal muscle insulin action and GLUT4 protein in skeletal muscle after STZ injection.  Diabetes. 1994;  43 564-571
  • 4 Giorgino F, Chen J -H, Smith R J. Changes in tyrosine phosphorylation of insulin receptors and a 170,000 molecular weight nonreceptor protein in vivo in skeletal muscle of streptozotocin-induced diabetic rats effects of insulin and glucose.  Endocrinology. 1992;  130 1433-1444
  • 5 Saad M JA, Araki E, Miralpeix M, White M F, Kahn C R. Regulation of insulin receptor susbstrate-1 in liver and muscle of animal models of insulin resistance.  J Clin Invest. 1992;  90 1839-1849
  • 6 Folli F, Saad M J, Backer J M, Kahn C R. Regulation of phosphotidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus.  J Clin Invest. 1993;  92 1787-1794
  • 7 Giorgino F, Logoluso F, Davalli A M, et al. Islet transplantation restores normal levels of insulin receptor and substrate tyrosine phosphorylation and phosphotidyl-inositol 3-kinase activity in skeletal muscle and myocardium of streptozotocin-induced diabetic rats.  Diabetes. 1999;  48 801-812
  • 8 Kainulainen H, Breiner M, Schurmann A, Marttinen A, Virjo A, Josst H G. In vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT4 in heart and various types of skeletal muscle from streptozotocin diabetic rats.  Biochen Biophys Acta. 1994;  1225 275-282
  • 9 Dombrowski L, Marette A. Marked depletion of GLUT4 glucose transporters in transverse tubules of skeletal muscle from streptozotocin - induced diabetic rats.  FEBS Lett. 1995;  374 43-47
  • 10 Dombrowski L, Roy D, Marette A. Selective impairment in GLUT4 translocation to transverse tubules in skeletal muscle of streptozotocin-induced diabetic rats.  Diabetes. 1998;  47 5-12
  • 11 Nosadini R, Del Prato S, Tiengo A, et al. Insulin resistance in Cushing’s syndrome.  J Clin Endocrinol Metab. 1983;  57 529-536
  • 12 Rizza R A, Mandarino L J, Gerich J E. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor defect of insulin action.  J Clin Endocrinol Metab. 1982;  54 131-138
  • 13 DePirro R, Green A, Kao Y, Olefsky J M. Effects of prednisone and dexamethasone in vivo and in vitro studies on insulin binding, deoxyglucose uptake and glucose oxidation in rat adipocytes.  Diabetologia. 1981;  21 149-153
  • 14 Amatruda J M, Livingston J N, Lockwood D H. Cellular mechanisms in selected states of insulin resistance: human obesity, glucocorticoids excess and chronic renal failure.  Diab Metab Rev. 1985;  3 293-317
  • 15 Holmang A, Bjorntorp P. The effects of cortisol on insulin sensitivity in muscle.  Acta Physiol Scand. 1992;  144 425-431
  • 16 Feley C, Felley E, Van Mele G, Frascarolo P, Jeguier E, Felber J. Impairment of glucose disposal by infusion of triglycerides in humans: Role of glycemia.  Am J Physiol. 1985;  256 E747-E752
  • 17 Ferrannini E, Barrett E J, Bevilacqua S, DeFronzo R A. Effect of fatty acids on glucose production and utilization in man.  J Clin Invest. 1983;  92 91-98
  • 18 Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1 associated phosphotidylinositol 3-kinase activity.  J Clin Invest. 1999;  103 253-259
  • 19 Oakes N D, Cooney G J, Camilleri S, Chisholm D J, Kraegen E W. Mechanism of liver and muscle insulin resistance induced by chronic high fat feeding.  Diabetes. 1998;  46 1768-1774
  • 20 Bitar M S. Glucocorticoid dynamics and impaired wound healing in diabetes mellitus.  Am J Pathol. 1998;  152 547-554
  • 21 Cameron O G, Thomas B, Tiongeo D, et al. Hypercortisolisms in diabetes mellitus.  Diabetes Care. 1987;  10 662-664
  • 22 Roy M, Collier B, Roy A. Hypothalamic-pituitary-adrenal axis dysregulation among diabetic outpatients.  Psychol Res. 1990;  31 31-37
  • 23 Knox W F, Auerback V H. The hormonal control of tryptophan peroxidase in the rat.  J Biol Chem. 1955;  214 307-313
  • 24 Gjerd H, Morland J, Olsen H. The antiglucocorticoid RU-486 inhibits the ethanol-induced increase of tryptophan oxygenase.  J Steroid Biochem. 1983;  23 1091-1092
  • 25 Kraegen E W, James D -E, Bennet S P, Chisholm D J. In vivo insulin sensitivity in the rat determined by the euglycemic clamp.  Am J Physiol. 1983;  245 E1-E7
  • 26 Leturque A, Gilbert M, Girard J. Glucose turnover during pregnancy in anaesthetized postabsorptive rats.  Biochem J. 1981;  196 633-636
  • 27 Sugden M C, Holness M J, Fryer L G. Differential regulation of glycogen synthetase by insulin and glucose in vivo in skeletal muscle of the rat.  Am J Physiol. 1997;  273 E479-E487
  • 28 Steele R. Influence of glucose loading and of injected insulin on hepatic glucose output.  Ann N Y Acad Sci. 1959;  82 420-430
  • 29 Ariano M A, Armstrong R G, Edgerton V R. Hind limb muscle fiber populations of five mammals.  J Histochem Cytochem. 1973;  21 51-55
  • 30 Armstrong R G, Pholps R O. Muscle fiber type composition of the rat hind limb.  Am J Anat. 1984;  171 259-272
  • 31 Kraegen E W, Jenkins A B, Storlien L H, Chisholm D J. Tracer studies of in vivo insulin action and glucose metabolism in individual peripheral tissues.  Horm Metab Res. 1990;  24 41-48
  • 32 Ferra P. Leturque A, Burnol AF et al. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat.  Biochem J. 1985;  228 103-110
  • 33 Kraegen E W, James D E, Jenkins A B. et al . Dose-response curves for in vivo insulin sensitivity in individual tissues in rats.  Am J Physiol. 1985;  248 E353-E362
  • 34 Kipins D M, Cori C F. Studies of tissue permeability v the penetration and phosphorylation of 2-deoxyglucose in the rat diaphragm.  J Biol Chem. 1959;  234 171-177
  • 35 Idstrom J-P, Rennie M J, Schersten T, et al. Membrane transport in relation to net uptake of glucose in the perfused rat hindlimb. Stimulatory effect of insulin, hypoxia and contractile activity.  Biochem J. 1986;  233 131-137
  • 36 Clausen T. The effect of insulin on glucose transport in muscle cells. In: Bonner F, Kleinzeller A (eds). Current topics in membranes and transport.  New York: ; Academic, 1975: 169-226
  • 37 Laughlin M H, Armstrong R B. Rat muscle blood flows as a function of time during prolonged slow treadmill exercise.  Am J Physiol. 1983;  244 H814-H824
  • 38 DeFrozo R A, Jacot E, Jequier E, et al. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catherization.  Diabetes. 1981;  20 1000-1007
  • 39 Yki-Jarvien H, Young A, Lamkin C, et al. Kinetic of glucose disposal in whole body and across skeletal muscle in man.  J Clin Invest. 1987;  79 1713-1719
  • 40 Migdalis I N, Kalogerpoulou K, Kalantzis L, Nounopoulos C, Bouloukos A, Samartzis M. Insulin-like growth factor-1 and IGF-1 receptors in diabetic patients with neuropathy.  Diab Med. 1995;  12 823-827
  • 41 Bitar M S. Insulin and glucocorticoid-dependent suppression of the IGF-1 system in diabetic wounds.  Surgery. 2000;  127 687-695
  • 42 Goodson W H, Hunt T K. Wound healing and the diabetic patients.  Surg Gynecol Obstet. 1979;  149 600-608
  • 43 Thomas P K. Diabetic neuropathy: human and experimental.  Drugs. 1986;  32 36-42
  • 44 Cline G W, Magnusson I, Rothman D L, et al. Mechanism of impaired insulin-stimulated muscle glucose metabolism in subjects with insulin-dependent diabetes mellitus.  J Clin Invest. 1997;  99 2219-2224
  • 45 Hom F G, Goodner C J. Insulin-dose-response characteristics among individual muscle and adipose tissues measured in the rat in vivo with (3H) 2-deoxyglucose.  Diabetes. 1984;  33 153-159
  • 46 James D E, Jenkin A B, Kraegen E W. Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in rats.  Am J Physiol. 1985;  248 E568-E574
  • 47 Randle P J, Hales C N, Garland P B, et al. The glucose-fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus.  Lancet. 1963;  1 785-789
  • 48 Randle P J, Newsholme E A, Garland P B. Regulation of glucose uptake by muscle. VIII Effects of fatty acids, ketone bodies and pyruvate and of alloxan-diabetes and starvation on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles.  Biochem J. 1964;  93 652-665
  • 49 Felber J -P, Ferrannin E, Golay A, et al. Role of lipid oxidation in pathogenesis of insulin resistance in obesity and type II diabetes.  Diabetes. 1987;  36 1341-1350
  • 50 Bevilacqua S, Buzzigoli G, Bonadonna R, et al. Operation of Randle’s cycle in patients with NIDDM.  Diabetes. 1990;  39 383-389
  • 51 Boden G, Jadali F, White J, et al. Effects of fat on insulin-stimulated carbohydrate metabolism in normal man.  J Clin Invest. 1991;  88 960-966
  • 52 Nuutila P, Koivisto V A, Knuuti J, et al. Glucose free fatty acid cycle operates in human heart and skeletal muscle in vivo. .  J Clin Invest. 1992;  89 1767-1774
  • 53 Wolfe B M, Klein S, Peters E J, Schmidt B F, Wolfe R R. Effect of elevated free fatty acid on glucose oxidation in normal humans.  Metab Clin Exp. 1988;  37 323-329
  • 54 Yki-Jarvinen H, Puhakainen I, Saloronta C, Groop L, Taskinen M -R. Demonstration of a novel feedback mechanism between FFA oxidation from intracellular and intravascular sources.  Am J Physiol. 1991;  260 E680-E689
  • 55 Boden G, Jadali F, White J, et al. Effects of fat on insulin-stimulated carbohydrate metabolism in normal man.  J Clin Invest. 1991;  88 960-966
  • 56 Boden G, Chen X, Ruiz J, White J V, Rossetti L. Mechanism of fatty acid-induced inhibition of glucose uptake.  J Clin Invest. 1994;  93 2438-2446
  • 57 Collier G R, Traianedes K, MaCaulay S L, O’Dea K. Effect of fatty acid oxidation inhibition on glucose metabolism in diabetic rats.  Horm Metab Res. 1993;  25 9-12
  • 58 Ratheiser K, Schneeweiss B, Waldhausl W, et al. Inhibition by etomoxir of carnitine palmitoyl transferase I reduces hepatic glucose production and plasma lipids in non-insulin dependent diabetes mellitus.  Metabolism. 1991;  40 1185-1190
  • 59 Knode A HO, Susanto F, Reinauer H, Gries F A. Effects of the carnitine-acyl transferase inhibitor etomoxir on insulin sensitivity, energy expenditure and substrate oxidation in NIDDM.  Horm Metab Res. 1997;  29 436-439
  • 60 Kruszynska Y T, Sherrat H AS. Glucose kinetics during acute and chronic treatment of rats with 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate, etomoxir.  Biochem Pharmacol. 1987;  36 3917-3921
  • 61 Wolf H PO, Brenner K W. The effect of etomoxir on glucose turnover and recycling with [1-14C], [3-3H]-glucose tracer in pigs.  Horm Metab Res. 1988;  20 204-207
  • 62 Rudeman N B, Toews C J, Shafrir E. Role of free fatty acids in glucose homeostasis.  Arch Intern Med. 1999;  123 299-313
  • 63 Rebrin K, Steil G M, Getty L, Bergman R N. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin.  Diabetes. 1995;  44 1038-1045
  • 64 Rossetti L, Giaccari A. Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake.  J Clin Invest. 1990;  85 1785-1792
  • 65 Oshima K, Shargilli N S, Chan T M, Bray G A. Adrenalectomy reverses insulin resistance in muscles from obese (ob/ob) mice.  Am J Physiol. 1984;  246 E193-E197
  • 66 Freedman M R, Stern J S, Reaven G M, Mondon C E. Effect of adrenalectomy on in vivo glucose metabolism in insulin resistant Zucker obese rats.  Horm Metab Res.. 1986;  18 296-298
  • 67 Napoli R, Davalli A M, Hirshman M F, Wertgasser R, Wrir G C, Horton E S. Islet transplantation under the kidney capsule fully corrects the impaired skeletal muscle glucose transport system of streptozotocin diabetic rats.  J Clin Invest. 1996;  97 1389-1397

Dr. Milad  Bitar

Department of Pharmacology
Faculty of Medicine
Kuwait University

P.O. Box 24923
Safat 13110
Kuwait


Phone: + 965 (5312) 300 Ext. 6364

Fax: + 965 (5318) 454/965 (534) 2583

Email: milad@hsc.kuniv.edu.kw

    >