Semin Thromb Hemost 2000; Volume 26(Number s1): 069-078
DOI: 10.1055/s-2000-9499
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Low-Molecular-Weight Heparin and Cancer

Leo R. Zacharski1 , Deborah L. Ornstein1 , Alexander C. Mamourian2
  • VA Medical & Regional Office Center, White River Junction, Vermont, and the
  • 1Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire and
  • 2Department of Radiology, Dartmouth Medical School, Hanover, New Hampshire. This work was supported, in part, by the Department of Veterans Affairs Medical Research Service and by the Tiffany Blake Fellowship from the Hitchcock Foundation, Hanover, New Hampshire
Further Information

Publication History

Publication Date:
31 December 2000 (online)

 

ABSTRACT

Heparin is a familiar anticoagulant drug with properties that may impede tumor growth; it modifies properties of cells that contribute to malignant dissemination such as angiogenesis, growth factor and protease activity, immune function, proliferation, and gene expression. Heparin has antitumor effects in animal models of malignancy, and studies in human malignancy show improved cancer outcome with heparin treatment. Meta-analyses comparing unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) for treatment of deep-vein thrombosis have shown apparent substantial improvement in cancer outcome in the subset of patients with malignancy who were randomly assigned to receive LMWH. This experience, together with the favorable pharmacokinetic properties of LMWH, provides a rationale for prospective clinical trials of LMWH in patients with cancer. Such trials should provide (a) definitive data on possible antitumor effects of this treatment, (b) insight into possible heterogeneous responses to heparin treatment among different histological types and stages of malignancy, and (c) a setting for exploring mechanisms of antineoplastic effect in human malignancy.

REFERENCES

  • 1 Hirsh J. Heparin.  N Engl J Med . 1991;  324 1565-1574
  • 2 Weitz J I. Low-molecular-weight heparins [published erratum appears in N Engl J Med 1997;337:1567].  N Engl J Med . 1997;  337 688-698
  • 3 Bergqvist D, Burmark U S, Flordal P A. Low molecular weight heparin started before surgery as prophylaxis against deep vein thrombosis: 2500 versus 5000 XaI units in 2070 patients.  Br J Surg . 1995;  82 496-501
  • 4 Monreal M, Alastrue A, Rull M. Upper extremity deep venous thrombosis in cancer patients with venous access devices-Prophylaxis with a low molecular weight heparin (Fragmin).  Thromb Haemost . 1996;  75 251-253
  • 5 Siragusa S, Cosmi B, Piovella F, Hirsh J, Ginsberg J S. Low-molecular-weight heparins and unfractionated heparin in the treatment of patients with acute venous thromboembolism: results of a meta-analysis.  Am J Med . 1996;  100 269-277
  • 6 Lensing A W, Prins M H, Davidson B L, Hirsh J. Treatment of deep venous thrombosis with low-molecular-weight heparins. A meta-analysis.  Arch Intern Med . 1995;  155 601-607
  • 7 Walsh-McMonagle D, Green D. Low-molecular-weight heparin in the management of Trousseau's syndrome.  Cancer . 1997;  80 649-655
  • 8 Or R, Nagler A, Shpilberg O. Low molecular weight heparin for the prevention of veno-occlusive disease of the liver in bone marrow transplantation patients.  Transplantation . 1996;  61 1067-1071
  • 9 Sakuragawa N, Hasegawa H, Maki M, Nakagawa M, Nakashima M. Clinical evaluation of low-molecular-weight heparin (FR-860) on disseminated intravascular coagulation (DIC)-a multicenter co-operative double-blind trial in comparison with heparin.  Thromb Res . 1993;  72 475-500
  • 10 Glantz M J, Burger P C, Friedman A H. Treatment of radiation-induced nervous system injury with heparin and warfarin.  Neurology . 1994;  44 2020-2027
  • 11 Or R, Elad S, Shpilberg O, Eldor A. Low molecular weight heparin stimulates megakaryocytopoiesis in bone-marrow transplantation patients.  Am J Hematol . 1996;  53 46-48
  • 12 Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities.  Cell . 1991;  64 867-869
  • 13 Lane D A, Adams L. Non-anticoagulant uses of heparin.  N Engl J Med . 1993;  329 129-130
  • 14 Buddecke E. Non-anticoagulant functions of heparin and heparin sulfate.  Hamostaseologie . 1996;  16 6-14
  • 15 Goerner A. The influence of anticlotting agents on transplantation and growth of tumor tissue.  J Lab Clin Med . 1930;  16 369-372
  • 16 Zacharski L R, Ornstein D L. Heparin and cancer.  Thromb Haemost . 1998;  80 10-23
  • 17 Halkin H, Goldberg J, Modan M, Modan B. Reduction of mortality in general medical in-patients by low-dose heparin prophylaxis.  Ann Intern Med . 1982;  96 561-565
  • 18 Kingston R D, Fielding J W, Palmer M K. Peri-operative heparin: A possible adjuvant to surgery in colo-rectal cancer?.  Int J Colorectal Dis . 1993;  8 111-115
  • 19 Törngren S, Rieger Å. The influence of heparin and curable resection on the survival of colorectal cancer.  Acta Chir Scand . 1983;  149 427-429
  • 20 Kohanna F H, Sweeney J, Hussey S, Zacharski L R, Salzman E W. Effect of perioperative low-dose heparin administration on the course of colon cancer.  Surgery . 1983;  93 433-438
  • 21 Kakkar A K, Hedges A R, Williamson R CN, Kakkar V V. Perioperative heparin therapy inhibits late death from metastatic cancer.  Int J Oncol . 1995;  6 885-888
  • 22 Lebeau B, Chastang C, Brechot J M. Subcutaneous heparin treatment increases survival in small cell lung cancer. ``Petites Cellules'' Group.  Cancer . 1994;  74 38-45
  • 23 von Tempelhoff F G, Dietrich M, Niemann F. Blood coagulation and thrombosis in patients with ovarian malignancy.  Thromb Haemost . 1997;  77 456-461
  • 24 Lindahl U, Hook M. Glycosaminoglycans and their binding to biological macromolecules.  Annu Rev Biochem . 1978;  47 385-417
  • 25 Iozzo R V. Proteoglycans: Structure, function, and role in neoplasia.  Lab Invest . 1985;  53 373-396
  • 26 Kjellen L, Lindahl U. Proteoglycans: Structures and interactions [published erratum appears in Annu Rev Biochem 1992;61:following viii].  Annu Rev Biochem . 1991;  60 443-475
  • 27 Piepkorn M, Hovingh P, Linker A. Glycosaminoglycan free chains. External plasma membrane components distinct from the membrane proteoglycans.  J Biol Chem . 1989;  264 8662-8669
  • 28 Dawes J. Interactions of heparins in the vascular environment.  Haemostasis . 1993;  212-219 (212-219)
  • 29 Elias E G, Shukla S K, Mink I B. Heparin and chemotherapy in the management of inoperable lung carcinoma.  Cancer . 1975;  36 129-136
  • 30 Volm M, Koomagi R, Mattern J. PD-ECGF, bFGF, and VEGF expression in non-small cell lung carcinomas and their association with lymph node metastasis.  Anticancer Res . 1999;  19 651-655
  • 31 Ohta Y, Endo Y, Tanaka M. Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer.  Clin Cancer Res . 1996;  2 1411-1416
  • 32 Linder C, Linder S, Munck-Wikland E, Strander H. Independent expression of serum vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in patients with carcinoma and sarcoma.  Anticancer Res . 1998;  18 2063-2068
  • 33 Takanami I, Tanaka F, Hashizume T, Kodaira S. Tumor angiogenesis in pulmonary adenocarcinomas: Relationship with basic fibroblast growth factor, its receptor, and survival.  Neoplasma . 1997;  44 295-298
  • 34 Fontanini G, Calcinai A, Boldrini L. Modulation of neoangiogenesis in bronchial preneoplastic lesions.  Oncol Rep . 1999;  6 813-817
  • 35 Okada M, Matsumori A, Ono K. Hepatocyte growth factor is a major mediator in heparin-induced angiogenesis.  Biochem Biophys Res Commun . 1999;  255 80-87
  • 36 Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: In vitro analysis of tumor-stromal interactions.  Cancer Res . 1997;  57 3305-3313
  • 37 Yi S, Chen J R, Viallet J. Paracrine effects of hepatocyte growth factor/scatter factor on non-small-cell lung carcinoma cell lines.  Br J Cancer . 1998;  77 2162-2170
  • 38 Chong I W, Lin S R, Lin M S. Heparin-binding epidermal growth factor-like growth factor and transforming growth factor-alpha in human non-small cell lung cancers.  J Formos Med Assoc . 1997;  96 579-585
  • 39 Takanami I, Imamuma T, Hashizume T. Expression of PDGF, IGF-II, bFGF and TGF-beta 1 in pulmonary adenocarcinoma.  Pathol Res Pract . 1996;  192 1113-1120
  • 40 Hagiwara K, Kobayashi T, Tobita M. Isolation of a cDNA for a growth factor of vascular endothelial cells from human lung cancer cells: Its identity with insulin-like growth factor II.  Jpn J Cancer Res . 1995;  86 202-207
  • 41 Klominek J, Robert K H, Bergh J. Production of a motility factor by a newly established lung adenocarcinoma cell line.  Anticancer Res . 1998;  18 759-767
  • 42 Garver Jr I R, Chan C S, Milner P G. Reciprocal expression of pleiotrophin and midkine in normal versus malignant lung tissues.  Am J Respir Cell Mol Biol . 1993;  9 463-466
  • 43 Zhang N, Deuel T F. Pleiotrophin and midkine, a family of mitogenic and angiogenic heparin-binding growth and differentiation factors.  Curr Opin Hematol . 1999;  6 44-50
  • 44 Sawada M, Miyake S, Ohdama S. Expression of tissue factor in non-small-cell lung cancers and its relationship to metastasis.  Br J Cancer . 1999;  79 472-477
  • 45 Shoji M, Hancock W W, Abe K. Activation of coagulation and angiogenesis in cancer: Immunohistochemical localization in situ of clotting proteins and vascular endothelial growth factor in human cancer.  Am J Pathol . 1998;  152 399-411
  • 46 Ornstein D L, Zacharski L R, Memoli V A. Coexisting macrophage-associated fibrin formation and tumor cell urokinase in squamous cell and adenocarcinoma of the lung tissues.  Cancer . 1991;  68 1061-1067
  • 47 Abbate R, Gori A M, Modesti P A. Heparin, monocytes, and procoagulant activity.  Haemostasis . 1990;  98-100 (98-100)
  • 48 Pepe G, Giusti B, Attanasio M. Tissue factor and plasminogen activator inhibitor type 2 expression in human stimulated monocytes is inhibited by heparin.  Semin Thromb Hemost . 1997;  23 135-141
  • 49 Borghesi L A, Yamashita Y, Kincade P W. Heparan sulfate proteoglycans mediate interleukin-7-dependent B lymphopoiesis.  Blood . 1999;  93 140-148
  • 50 Yoshie Y, Ohshima H. Synergistic induction of DNA strand breakage by cigarette tar and nitric oxide.  Carcinogenesis . 1997;  18 1359-1363
  • 51 Norrby K. Heparin and angiogenesis: A low-molecular-weight fraction inhibits and a high-molecular-weight fraction stimulates angiogenesis systemically.  Haemostasis . 1993;  141-149 (141-149)
  • 52 Norrby K, Ostergaard P. Basic-fibroblast-growth-factor-mediated de novo angiogenesis is more effectively suppressed by low-molecular-weight than by high-molecular-weight heparin.  Int J Microcirc Clin Exp . 1996;  16 8-15
  • 53 Jayson G C, Gallagher J T. Heparin oligosaccharides: Inhibitors of the biological activity of bFGF on Caco-2 cells.  Br J Cancer . 1997;  75 9-16
  • 54 Jezzard P. Advances in perfusion MR imaging.  Radiology . 1998;  208 296-299
  • 55 Horlocker T T, Heit J A. Low molecular weight heparin: biochemistry, pharmacology, perioperative prophylaxis regimens, and guidelines for regional anesthetic management.  Anesth Analg . 1997;  85 874-885
  • 56 Zacharski L R, Wojtukiewicz M Z, Costantini V, Ornstein D L, Memoli V A. Pathways of coagulation/fibrinolysis activation in malignancy.  Semin Thromb Hemost . 1992;  18 104-116
  • 57 Lapierre F, Holme K, Lam L. Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties.  Glycobiology . 1996;  6 355-366
  • 58 Sciumbata T, Caretto P, Pirovano P. Treatment with modified heparins inhibits experimental metastasis formation and leads, in some animals, to long-term survival.  Invasion Metastasis . 1996;  16 132-1431
    >