Subscribe to RSS
DOI: 10.1055/s-2000-8785
Eine Narkosetechnik für experimentelle Untersuchungen und mikrochirurgische Eingriffe am Ohr neugeborener Nagetiere
General Anesthesia in Newborn Rodents for Experimental Microsurgery of the EarPublication History
Publication Date:
31 December 2000 (online)
Zusammenfassung
Hintergrund: Narkosen für tierexperimentelle Untersuchungen müssen eine adäquate Sedierung und Analgesierung gewährleisten, für die Tiere eine gute Verträglichkeit aufweisen und für den Untersucher möglichst genau steuerbar sein. Methode: Über eine spezielle Beatmungsmaske wurde neugeborenen Ratten und Mäusen ein Lachgas/Sauerstoff-Gemisch zusammen mit Halothan zugeführt und zur Aufrechterhaltung der Narkose die Halothaninhalation beibehalten. Für die Narkoseausleitung erhielten die Tiere reinen Sauerstoff. Herzfrequenz, Sauerstoffsättigung und Spontanatmung wurden als Vitalparameter überwacht. Ergebnisse: Mit der vorgestellten Inhalationsnarkose konnten bei den neugeborenen Nagern mikrochirurgische Ohreingriffe blutungsarm und schmerzfrei durchgeführt sowie akustisch evozierte Potentiale störungsfrei und reproduzierbar abgeleitet werden. Schlußfolgerung: Die beschriebene Narkosetechnik ist für die Tiere gut verträglich, führt zu einer sicheren Sedierung und ermöglicht die Durchführung konservativer und operativer Eingriffe bei neugeborenen Ratten und Mäusen.
Background: Experimental investigations on laboratory animals usually require sufficient anesthesia with adequate analgesia and sedation. The technique used should be reliable and easily controllable by the investigator. Here, we present a technique for anesthesia to facilitate invasive and noninvasive investigations in newborn rats and mice. Methods: Using a custom made breathing mask, anesthesia was induced in these animals with inhalation of gaseous nitrous oxide-oxygen (equal volume at 1 l/min) and halothane (3 % by volume). To maintain anesthesia, halothane insufflation was reduced to 1 - 1.5 % by volume. After completion of the experimental procedure, the application of the inhalative gases was determined and substituted by oxygen at 2 l/min. Anesthesia was performed in spontaneously breathing animals. Heart frequency and oxygenation were monitored using a commercially available pulse oximeter. Results: Using the above described technique in neonatal rodents, microsurgery of the ear was performed without signs of pain or major bleeding. Auditory brain stem responses were recorded clearly and reproducible. Conclusions: This method represents a noninvasive, well tolerated and easy controllable anesthetic procedure which has proven to provide a sufficient and reliable sedation in neonatal rodents for surgical and nonsurgical investigations.
Schlüsselwörter:
Narkose - Neugeborene Nager - Ohrchirurgie - Elektroakustik
Key words:
Anesthesia - Neonatal rodents - Ear surgery - Auditory brain stem responses
Literatur
- 01 Dazert S, Kim D W, Luo L, Aletsee C, Garfunkel S, Maciag T, Baird A, Ryan A F. Focal delivery of fibroblast growth fator-1 by transfected cells induces spiral ganglion neurite targeting in vitro. J Cell Physiol. 1998; 177 123-129
- 02 Roth B, Bruns V. Postnatal development of the rat organ of Corti. I. General morphology, basilar membrane, tectorial membrane and border cells. Anat Embryol. 1992; 185 559-569
- 03 Roth B, Bruns V. Postnatal development of the rat organ of Corti. II. Hair cell receptors and their supporting elements. Anat Embryol. 1992; 185 571-581
- 04 Uziel A, Romand R, Marot M. Development of cochlear potentials in rats. Audiology. 1981; 20 89-100
- 05 Borg E, Viberg A. Age-related hair cell loss in spontaneously hypertensive and normotensive rats. Hear Res. 1987; 30 111-118
- 06 Geal-Dor M, Freeman S, Li G, Sohmer H. Development of hearing in neonatal rats: Air and bone conducted ABR thresholds. Hear Res. 1993; 69 236-242
- 07 Lidan D, Yedgar S, Aronson H B, Sohmer H. Influence of experimentally elevated blood viscosity on the auditory nerve-brain stem evoked response and threshold. Hear Res. 1992; 62 57-62
- 08 Murofushi T, Kaga K, Asakage T. Temporary latency shifts in auditory evoked potentials by injection of lidocaine in the rat. Hear Res. 1994; 76 53-59
- 09 Overbeck G W, Church M W. Effects of tone burst frequency and intensity on the auditory brain stem response (ABR) from albino and pigmented rats. Hear Res. 1992; 59 129-137
- 10 Kitamura K, Sakagami M, Umemoto M, Takeda N, Doi K, Kasugai T, Kitamura Y. Strial dysfunction in a melanocyte deficient mutant rat (Ws/Ws rat). Acta Otolaryngol (Stockh). 1994; 114 177-181
- 11 Pukkila M, Zhai S, Virkkala J, Pirvola U, Ylikoski J. The „toughening” phenomenon in rat's auditory organ. Acta Otolaryngol (Stockh). 1997; Suppl 529 59-62
- 12 Zhou R, Assouline J G, Abbas P J, Messing A, Gantz B J. Anatomical and physiological measures of auditory system in mice with peripheral myelin deficiency. Hear Res. 1995; 88 87-97
- 13 Laurent C, Hellström S, Anniko M. Inne ear effects of exogenous hyaluronan in middle ear of the rat. Acta Otolaryngol (Stockh). 1988; 105 273-280
- 14 Blatchley B J, Cooper W A, Coleman J. Development of auditory brain stem response to tone pip stimuli in the rat. Dev Brain Res. 1987; 32 75-84
- 15 Freeman S, Cherny L, Sohmer H. Thyroxine affects physiological and morphological development of the ear. Hear Res. 1996; 97 19-29
- 16 Plantz R G, Williston J L, Jewett D L. Effects of undernutrition on development of far-field auditory brain stem response in rat pups. Brain Res. 1981; 213 319-326
- 17 Luo L, Moore J K, Baird A, Ryan A F. Expression of acidic FGF mRNA in rat auditory brainstem during postnatal maturation. Dev Brain Res. 1995; 86 24-34
- 18 Stockard J J, Sharbrough F W, Tinker J A. Effects of hypothermia on the human brainstem auditory response. Ann Neurol. 1978; 3 (4) 368-370
Dr. Priv.-Doz. Stefan Dazert
Klinik und Poliklinik für Hals-, Nasen- und Ohrenkranke Bayerische Julius-Maximilians-Universität Würzburg
Josef-Schneider-Straße 11
97080 Würzburg