Es werden tierexperimentelle Befunde vorgestellt, die den Einfluss frühkindlicher Erfahrungs- und Lernprozesse auf die funktionelle Reifung des Gehirns und die zugrunde liegende neurobiologische Basis der Entwicklung geistiger und psychischer Fähigkeiten zeigen. Psychosoziale Einflüsse während Phasen früher postnataler Zeitfenster mit erhöhter neuronaler und synaptischer Plastizität können tiefgreifende dauerhafte Veränderungen der Hirnfunktionen induzieren, die sich später, nach Ablauf dieser plastischen Phasen, nur noch bedingt korrigieren lassen. Ein traumatisierendes frühes Umfeld kann zu einer Unter- bzw. Fehlentwicklung funktioneller Schaltkreise des Gehirns führen, wobei vor allem das limbische System betroffen ist, das für die höhere neuronale Integration von Kognition und Emotion wie auch für Lern- und Gedächtnisprozesse zuständig ist. Solche aus früher pathogener psychosozialer Erfahrung induzierten hirnbiologischen Fehlentwicklungen bilden wahrscheinlich die neurobiologische Grundlage von psychischen Störungen, die als Neurosen, Persönlichkeitsstörungen und affektive Störungen und somit als Erkrankungen klassifiziert werden, die bislang fast ausschließlich aus psychoanalytischer oder verhaltenstheoretischer, kaum aber aus hirnbiologischer Sicht betrachtet wurden. Implikationen für therapeutische Möglichkeiten und zukünftige Forschung werden diskutiert.
Juvenile Experience and Learning Modulate the Functional Maturation of the Brain: Relevance for the Genesis and Therapy of Mental Disorders
This article summarizes experimental data that indicate how juvenile experience and learning events modulate the functional maturation of the brain, shaping thereby the neuronal substrate for the development of intellectual and socio-emotional abilities. The fact that early experience occurs during early postnatal brain development, i.e. phases of elevated neuronal and synaptic plasticity, results in an „imprinting” of synaptic connectivity and neural circuitry in the infant brain. Results from experimental research in animal models support the hypothesis that impoverished intellectual stimulation and disturbance of the socio-emotional environment during early childhood may disturb the formation of functional brain pathways, in particular of the limbic circuits, which play a major role in emotion and learning. Such defective brain systems, representing neurofunctional „scars” in the brain, may be the neuronal basis of a variety of mental disorders and clinical symptoms caused by early stressful psychosocial environment. Ultimately, the goal will be to apply the knowledge gained to the development of biological and psychosocial intervention strategies by utilizing remaining plasticity of the adult human brain aimed at promoting human health, decreasing susceptibility and increasing resistance to disease.
Key words
Learning - Emotions limbic system - Brain development - Affective disorders
1 Die Arbeiten der Autoren werden gefördert durch den Sonderforschungsbereich 426 der Deutschen Forschungsgemeinschaft „Funktion und Dysfunktion des limbischen Systems”.
1
Literatur
1
Lorenz K.
Der Kumpan in der Umwelt des Vogels.
Journal für Ornithologie.
1935;
83
137-413
12 Ambrose J A. The concept of a critical period for the development of social responsiveness. In: Foss BM (Hrsg) Determinants of Infant Behavior II. London; Methuen 1963
13
Hoffman H S, Ratner A M.
A reinforcement model of imprinting: implications for socialization in monkeys and men.
Psychological Review.
1973;
8
527-544
14 Leidermann P H. Die soziale Bindung der Mutter an das Kind: Gibt es eine sensible Phase?. In: Immelmann K, Barlowe GW, Petrinovich L, Main M (Hrsg) Verhaltensentwicklung bei Mensch und Tier. Hamburg, Berlin; Verlag Paul Parey 1982: 566-580
16 Rutter M. Childhood experiences and adult psychosocial functioning. In: Ciba Foundation Symposium The childhood Environment and Adult Disease. Chichester; Wiley 1991: 189-208
22
Skeels H M.
Adult status of children with contrasting early life experiences: a follow-up study.
Monographs of the Society for Research in Child Development..
1966;
105, Vol 31 No 3
1-65
27
Braun K.
Synaptische Reorganisation bei frühkindlichen Erfahrungs- und Lernprozessen: Relevanz für die Entstehung psychischer Erkrankungen.
Zeitschrift für Klinische Psychologie, Psychiatrie und Psychotherapie.
1996;
44
253-266
29
Gruss M, Braun K.
Stimulus-evoked increase of glutamate in the mediorostral neostriatum/hyperstriatum ventrale of domestic chick after auditory filial imprinting: an in vivo microdialysis study.
J Neurochem.
1996;
66
1167-73
30
Bredenkötter M, Braun K.
Changes of neuronal responsiveness in the mediorostral neostriatum/hyperstriatum after auditory filial imprinting in the domestic chick.
Neuroscience.
1997;
76
355-65
31
Bock J, Wolf A, Braun K.
Influence of the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid on auditory filial imprinting in the domestic chick.
Neurobiol Learn Mem.
1996;
65
177-88
32
Bock J, Schnabel R, Braun K.
Role of the dorso-caudal neostriatum in filial imprinting of the domestic chick: a pharmacological and autoradiographical approach focused on the involvement of NMDA-receptors.
Eur J Neurosci.
1997;
9
1262-1272
33
Wallhäußer E, Scheich H.
Auditory imprinting leads to differential 2-deoxyglucose uptake and dendritic spine loss in the chick rostral forebrain.
Developmental Brain Research.
1987;
31
29-44
34
Bock J, Braun K.
Filial imprinting in domestic chicks is associated with spine pruning in the associative area, dorsocaudal neostriatum.
Eur J Neurosci.
1999b;
11
2566-2570
36
Bock J, Braun K.
Differential emotional experience leads to pruning of dendritic spines in the forebrain of domestic chicks.
Neural Plast.
1998;
6
17-27
37 Scheich H. Morphological correlates of learning: facts, problems and propositions. In: Greenspan RJ, Kyriacou CP (Eds) Flexibility and Constraint in Behavioral Systems. Dahlem Workshop Reports 55. Cichester New York, Brisbane, Toronto Singapore; John Wiley & Sons 1994: 119-133
38 Scheich H, Wallhäußer-Franke E, Braun K. Does synaptic selection explain auditory imprinting?. In: Squire LR, Weinberger NM, Lynch G, McGaugh JL (Hrsg) Memory: Organization and Locus of Change. New York, Oxford; Oxford University Press 1991: 114-159
39 Bock J, Braun K. Juvenile emotional experience leads to changes of spine densities in the anterior cingulate cortex of the rat. Brighton; FENS 2000: in press
40 Braun K, Helmeke C, Ovtsharov W, Poeggel G. Maternal deprivation induces changes of spine and shaft synapses in the anterior cingulate cortex. Jerusalem, Israel; 5th IBRO World Congress of Neuroscience Juli 1999: 53
41
Sanches-Toscano F, Sanchez M, Garzon J.
Changes in the number of denritic spines in the medial preoptic area during a premature long-term social isolation in rats.
Neuroscience Lett.
1991;
122
1-3
42
Bogerts B.
Quantitativ-morphometrische Untersuchungen am Corpus geniculatum laterale und Colliculus superior der Ratte nach vollständigem Lichtentzug.
J Hirnforsch.
1977;
18
303-319
43
Poeggel G, Lange E, Hase C, Metzger M, Gulyaeva N, Braun K.
Maternal separation and early social deprivation in Octodon degus: quantitative changes of nicotinamide adenine dinucleotide phosphate-diaphorase-reactive neurons in the prefrontal cortex and nucleus accumbens.
Neuroscience.
1999;
94
497-504
44
Kramer G W, Ebert M H, Lake C R, McKinney W T.
Hypersensitivity to d-amphetamine several years after early social deprivation in rhesus monkeys.
Psychopharmacol.
1984;
82
266-271
45
Lewis M H, Gluck J P, Beauchamp A J, Keresztury M F, Mailman R B.
Long-term effects of early social isolation in Macaca mulatta: changes in dopamine receptor function following apomorphine challenge.
Brain Res.
1990;
513
67-73
46
Martin L J, Spicer D M, Lewis M H, Gluck J P, Cork L C.
Social deprivation of infant rhesus monkeys alters the chemoarchitecture of the brain. I. Subcortical regions.
J Neurosci.
1991;
11
3344-3358
47
Winterfeld K T, Teuchert-Noodt G, Dawirs R R.
Social environment alters both ontogeny of dopamine innervation of the medial prefrontal cortex and maturation of working memory in gerbils (Meriones unguiculatus).
J Neurosci Res.
1998;
52
201-209
48
Braun K, Lange E, Metzger M, Poeggel G.
Maternal separation followed by early social deprivation affects the development of monoaminergic fiber systems in the medial prefrontal cortex of Octodon degus.
Neuroscience.
2000;
95
309-318
49
Gruss M, Braun K.
Distinct activation of monoaminergic pathways in chick brain in relation to auditory imprinting and stressful situations: a microdialysis study.
Neuroscience.
1997;
76
891-9
50
Bickerdike M J, Wright I K, Marsden C A.
Social isolation attenuates rat forebrain 5-HT release induced by KCl stimulation and exposure to novel environment.
Behav Pharmacol.
1993;
4
231-236
56
Huttenlocher P R, deCourtier C, Garey L, van der Loos H.
Synaptogenesis in human visual cortex - evidence for synapse elimination during normal development.
Neuroscience Lett.
1982;
33
247-252
58
Agid O, Shapira H, Zislin J, Ritser M, Hanin B, Murad H, Troudart T, Bloch M, Heresco-Levy U, Lerer B.
Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia.
Mol Psychiatry.
1999;
4
163-72
59
Drayer N, Langeland W.
Childhood trauma and preceived parental dysfunction in the etiology of dissociative symptoms in psychiatric inpatients.
Am J Psychiatry.
1999;
156
379-385
60
Furukawa T, Mizukawa R, Hirai T, Fujihara S, Kitamura T, Takahashi K.
Childhood parental loss and schizophrenia: evidence against pathogenic but for some pathoplastic effects.
Psychiatry Res.
1998;
81
353-362
61
Furukawa T A, Ogura A, Hirai T, Fujihara S, Kitamura T, Takahashi K.
Early parental separation experiences among patients with bipolar disorder and major depression: a case-control study.
J Affective Disorders.
1999;
52
85-91
62
Keshavan M S, Anderson S, Pettegrew J W.
Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited.
J Psychiatr Res.
1994;
28
239-265
63
Gabriel S M, Haroutunian V, Powchick P, Honer W G, Davidson M, Davies P, Davis K L.
Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia.
Arch Gen Psychiatr.
1997;
54
559-566
64
Eastwood S L, Harrison P J.
Detection and quantification of hippocampal synaptophysin messenger RNA in schizophrenia using autoclaved, formalin-fixed, paraffin wax-embedded sections.
Neuroscience.
1999;
93
99-106
65
Highley J R, Esiri M M, McDonald B, Cortina-Borja M, Herron B M, Crow T J.
The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study.
Brain.
1999;
122
99-110
66
Honer W G, Falkai P, Chen C, Arango V, Mann J J, Dwork A J.
Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness.
Neuroscience.
1999;
91
1247-1255
67
Karson C N, Mrak R E, Schluterman K O, Sturner W Q, Sheng J G, Griffin W S.
Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for „hypofrontality”.
Mol Psychiatry.
1999;
4
39-45
68
Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries C G, Blennow K.
The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains.
Schizophr Res.
1999;
40
23-9
69
Bogerts B.
Plastizität von Hirnstruktur und -funktion als neurobiologische Grundlage der Psychotherapie.
Z Klin Psychologie, Psychiatrie, Psychotherapie.
1996;
44
243-252
72
Uno H, Tarara R, Else J G, Suleiman M A, Sapolsky R M.
Hippocampal damage associated with prolonged and fatal stress in primates.
J Neuroscience.
1989;
9
1705-1711
73
Meyer G, Ferres-Torres R, Mas M.
The effects of puberty and castration on hippocampal dendritic spines of mice. A Golgi study.
Brain Res.
1978;
155
108-112
74
Gould E, Woolley C S, Frankfurt M, McEwen B S.
Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood.
J Neurosci.
1990;
10
1286-1291
75
Kempermann G, Gage F H.
Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal.
Hippocampus.
1999;
9
321-32
77
Xerri C, Merzenich M M, Jenkins W, Santucci S.
Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys.
Cereb Kortex.
1999;
9
264-276
78
Vrensen G, Nunez-Cardozo J.
Changes in size and shape of synaptic connections after visual training: an ultrastructural approach of synaptic plasticity.
Brain Res.
1981;
218
79-97
79
Black J E, Isaacs K R, Anderson B J, Alcantara A A, Greenough W T.
Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats.
Proc Natl Acad Sci USA.
1990;
87
5568-5572
80
Greenough W T, Larson J R, Withers G S.
Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex.
Behavioral and Neural Biol.
1985;
44
301-314
81
Jones T A, Klintsova A Y, Kilman V L, Sirevaag A M, Greenough W T.
Induction of multiple synapses by experience in the visual cortex of adult rats.
Neurobiol of Learn And Mem.
1997;
68
13-20
82
Moser M B, Trommald M, Andersen P.
An increase in dendritic spine density on hippocampal pyramidal cells following spatial learning in adult rats suggests the formation of new synapses.
Proc Natl Acad Sci USA.
1994;
91
12673-12675
1 Die Arbeiten der Autoren werden gefördert durch den Sonderforschungsbereich 426 der Deutschen Forschungsgemeinschaft „Funktion und Dysfunktion des limbischen Systems”.