Semin Thromb Hemost 2000; 26(6): 605-618
DOI: 10.1055/s-2000-13216
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Fibrin Clot Formation and Lysis: Basic Mechanisms

Johannes J. Sidelmann1 , Jørgen Gram1 , Jørgen Jespersen, Cornelis Kluft1,2
  • 1From the Department for Thrombosis Research, University of Southern Denmark-Esbjerg, Denmark
  • 2The Gaubius Laboratory, TNO-PG, Leiden, The Netherlands
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

The hemostatic balance, introduced more than 40 years ago, addresses the components and reactions involved in fibrin turnover. Fibrin is placed in the core of this delicate balance. Defects in the mechanisms responsible for fibrin turnover might lead to thrombosis or bleeding, and fibrin consequently is an important substrate in the physiology of hemostasis.

This review describes the components and processes involved in fibrin formation and fibrin degradation. Particular emphasis is put on the reactions involved in the conversion of fibrinogen to fibrin, the polymerization of fibrin molecules induced by coagulation factor XIII (FXIII), and the degradation of fibrinogen and fibrin mediated by plasmin and elastase. Furthermore, factors influencing fibrin structure and fibrin breakdown are addressed; in particular polymorphisms in the genes coding for fibrinogen and FXIII, but also the physical and biochemical conditions in which fibrin is formed.

The past decades have produced a bulk of biochemical publications reviewing fibrin turnover and fibrin structure, and it has been shown that alterations in fibrin structure are important for the development of various disease conditions, whereas, the architecture of fibrin can be modified by certain drugs and chemical compounds. However, these topics deserve increased attention in clinical settings. Of particular importance might be more detailed clinical studies that review the influence of polymorphisms in the genes coding for the key factors involved in fibrin metabolism on the development of hemostatic diseases, but also the role of elastase-induced fibrin degradation deserves increased attention.

REFERENCES

  • 1 Astrup T. The biological significance of fibrinolysis.  Lancet . 1956;  2 565-568
  • 2 Astrup T. The haemostatic balance.  Thromb Diath Haemorrh . 1958;  2 347-357
  • 3 Blockmans D, Deckmyn H, Vermylen J. Platelet activation.  Blood Rev . 1995;  9 143-156
  • 4 Jespersen J. Pathophysiology and clinical aspects of fibrinolysis and inhibition of coagulation. Experimental and clinical studies with special reference to women on oral contraceptives and selected groups of thrombosis prone patients.  Dan Med Bull . 1988;  35 1-33
  • 5 Gram J. The haemostatic balance in groups of thrombosis-prone patients-with particular reference to fibrinolysis in patients with myocardial infarction.  Dan Med Bull . 1990;  37 210-234
  • 6 Roberts H R, Tabares A H. Overview of the coagulation reactions. In: High KA, Roberts HR, eds. Molecular Basis of Thrombosis and Haemostasis New York: Marcel Dekker, 1995: 35-50
  • 7 Bladbjerg E-M. Activation of blood coagulation factor VII: biochemical and physiological aspects related to dietary fat intake.  Doctoral thesis. Esbjerg: South Jutland University Press, 1996: 1-85
  • 8 Gaffney P J, Edgell T A, Whitton C M. The haemostatic balance-Astrup revisited. Haemostasis .  1999;  29 58-71
  • 9 Rojkjaer R, Schmaier A H. Activation of the plasma kallikrein/kinin system on endothelial cell membranes.  Immunopharmacology . 1999;  43 109-114
  • 10 Hasan A AK, Zisman T, Schmaier A H. Identification of cytokeratin 1 as a binding protein and presentation receptor for kininogen on endothelial cells.  Proc Natl Acad Sci USA . 1998;  95 3615-3620
  • 11 Motta G, Rojkjaer R, Hasan A KK, Cines D B, Schmaier A H. High molecular weight kininogen regulates prekallikrein assembly and activation on endothelial cells: a novel mechanism for contact activation.  Blood . 1998;  91 516-528
  • 12 Hasan A KK, Amenta S, Schmaier A H. Bradykinin and its metabolite, Arg-Phe-Pro-Gly- Phe, are selective inhibitors of α-thrombin-induced platelet activation.  Circulation . 1996;  94 1465-1473
  • 13 Hoylaerts M, Rijken D C, Lijnen H R, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator.  J Biol Chem . 1982;  257 2912-2919
  • 14 Pennica D, Holmes W E, Kohr W J. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli Nature .  1983;  301 214-221
  • 15 Günzler W A, Steffens G J, Ötting F. Structural relationship between high and low molecular mass urokinase.  Hoppe-Seyler's Z Physiol Chem . 1982;  363 133-141
  • 16 Holmes W E, Pennica D, Blaber M. Cloning and expression of the gene for pro-urokinase in Escherichia coli Biotechnology .  1985;  3 923-929
  • 17 Ichinose A, Fujikawa K, Suyama T. The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin.  J Biol Chem . 1986;  261 3486-3489
  • 18 Hauert J, Nicoloso G, Schleuning W D. Plasminogen activators in dextran sulfate-activated euglobulin fractions: a molecular analysis of factor XII- and prekallikrein-dependent fibrinolysis.  Blood . 1989;  73 994-999
  • 19 Binnema D J, Dooijewaard G, Turion P NC. An analysis of the activators of single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphate euglobulin fraction of normal plasma and of plasmas deficient in factor XII and prekallikrein.  Thromb Haemost . 1991;  65 144-148
  • 20 Tsuda H, Miyata T, Iwanaga S, Yamamoto T. Analysis of intrinsic fibrinolysis in human plasma induced by dextran sulfate.  Thromb Haemost . 1992;  67 440-444
  • 21 Mandle R J, Kaplan A P. Hageman-factor-dependent fibrinolysis: Generation of fibrinolytic activity by the interaction of human activated factor XI and plasminogen.  Blood . 1979;  54 850-862
  • 22 Bouma B N, Griffin J H. Deficiency of factor XII-dependent plasminogen proactivator in prekallikrein-deficient plasma.  J Lab Clin Med . 1978;  91 148-155
  • 23 Venneröd A M, Laake K. Prekallikrein and plasminogen proactivator: absence of plasminogen proactivator in Fletcher factor deficient plasma.  Thromb Res . 1976;  8 519-522
  • 24 Saito H. The participation of plasma thromboplastin antecedent (factor XI) in contact-activated fibrinolysis.  Proc Soc Exp Biol Med . 1980;  164 153-157
  • 25 Kluft C. Studies on the fibrinolytic system in human plasma: quantitative determination of plasminogen activators and proactivators.  Thromb Haemost . 1979;  41 365-383
  • 26 Kluft C, Trumpi-Kalshoven M M, Jie A FH, Veldhuyzen-Stolk E C. Factor XII-dependent fibrinolysis: a double function of plasma kallikrein and the occurrence of a previously undescribed factor XII- and kallikrein-dependent plasminogen proactivator.  Thromb Haemost . 1979;  41 756-773
  • 27 Binnema D J, Dooijewaard G, van Iersel J L J. The contact-system dependent plasminogen activator from human plasma: identification and characterization.  Thromb Haemost . 1990;  64 390-397
  • 28 Sidelmann J J. Contact activation of the fibrinolytic system in human blood. Biochemical and analytical aspects Doctoral Thesis. Esbjerg: South Jutland University Press, 1997: 1-83
  • 29 Heiden M, Seitz R, Egbring R. The role of inflammatory cells and their proteases in extravascular fibrinolysis.  Semin Thromb Hemost . 1996;  22 497-501
  • 30 Weitz J I, Huang A J, Landman S L. Elastase-mediated fibrinogenolysis by chemo-attractant-stimulated neutrophils occurs in the presence of physiologic concentrations of antiproteinases.  J Exp Med . 1987;  166 1836-1850
  • 31 Dempfle C E, Schott D, Schuster V, Heene D L. Fibrinogen heterogeneity and fibrinogen degradation in homozygous plasminogen deficiency: evidence for an alternative fibrinogenolytic pathway.  Thromb Haemost . 1999;  (suppl) 695
  • 32 Machovich R, Owen G O. The elastase-mediated pathway of fibrinolysis.  Blood Coag Fibrinolysis . 1990;  1 79-90
  • 33 Suzuki K. Protein C. In: High KA, Roberts HR, eds. Molecular Basis of Thrombosis and Haemostasis New York: Marcel Dekker 1995: 393-424
  • 34 Suzuki K. Protein S. In: High KA, Roberts HR, eds. Molecular Basis of Thrombosis and Haemostasis New York: Marcel Dekker 1995: 459-478
  • 35 Bertina R M. Molecular risk factors for thrombosis.  Thromb Haemost . 1999;  82 601-609
  • 36 Schapira M, Scott C F, Colman R W. Protection of human plasma kallikrein from inactivation by C1 inhibitor and other protease inhibitors. The role of high molecular weight kininogen.  Biochemistry . 1981;  20 2738-2743
  • 37 Scott C F, Schapira M, James H L. Inactivation of FXIa by plasma protease inhibitors. Predominant role of α1-protease inhibitor and protective effect of high molecular weight kininogen.  J Clin Invest . 1982;  69 844-852
  • 38 Pixley R A, Schmaier A, Colman R A. Effect of negatively charged activating compounds on inactivation on factor XIIa by C1 inhibitor.  Arch Biochem Biophys . 1987;  256 490-498
  • 39 Vestergaard A B, Andersen H F, Magnusson S, Halkier T. Histidine-rich glycoprotein inhibits contact activation of blood coagulation.  Thromb Res . 1990;  60 385-396
  • 40 Schousboe I. β2-Glycoprotein I: a plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway.  Blood . 1985;  66 1086-1091
  • 41 Suenson E, Lützen O, Thorsen S. Initial plasmin-degradation of fibrin as a basis of a positive feed-back mechanism in fibrinolysis.  Eur J Biochem . 1984;  140 513-522
  • 42 Christensen U. C-terminal lysine residues of fibrinogen fragments essential for binding to plasminogen.  FEBS Lett . 1985;  182 43-46
  • 43 Bajzar L, Nesheim M E, Tracy P B. The profibrinolytic effect of activated protein C in clots formed from plasma is TAFI-dependent.  Blood . 1996;  88 2093-2100
  • 44 Gailani D, Broze G J. Factor XI activation in a revised model of blood coagulation.  Science . 1991;  253 909-912
  • 45 Mosnier L O, von dem Borne A P, Meijers J C, Bouma B N. Plasma TAFI levels influence the clot lysis time in healthy individuals in the presence of an intact intrinsic pathway of coagulation.  Thromb Haemost . 1998;  80 829-835
  • 46 Minnema M C, Ten Cate H, Hack C E. The role of factor XI in coagulation: a matter of revision.  Semin Thromb Hemost . 1999;  25 419-428
  • 47 Bernstein P R, Edwards P D, Williams J C. Inhibitors of human leukocyte elastase.  Prog Med Chem . 1994;  31 59-120
  • 48 Blombäck B. Fibrinogen and fibrin-Proteins with complex roles in hemostasis and thrombosis.  Thromb Res . 1996;  83 1-75
  • 49 Mosesson M W. Fibrinogen structure and fibrin clot assembly.  Semin Thromb Hemost . 1998;  24 169-174
  • 50 Mosesson M W. Fibrinogen and fibrin polymerization and functions.  Blood Coag Fibrinolysis . 1999;  10(suppl 1) 45-48
  • 51 Kitchens C S, Newcomb T F. Factor XIII.  Medicine . 1979;  58 413-429
  • 52 Board P G, Losowsky M S, Miloszewski K JA. FXIII: inherited and acquired deficiency.  Blood Reviews . 1993;  7 229-242
  • 53 Muszbek L, Ádány R, Mikkola H. Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function.  Crit Rev Clin Lab Sci . 1996;  33 357-421
  • 54 Muszbek L, Yee V C, Hevessy Z. Blood coagulation factor XIII: structure and function.  Thromb Res . 1999;  94 271-305
  • 55 Aoki N, Harpel P L. Inhibitors of the fibrinolytic enzyme system.  Semin Thromb Hemost . 1984;  10 24-41
  • 56 Barry E LR, Mosher F D. Factor XIII cross-linking of fibronectin at cellular matrix assembly sites.  J Biol Chem . 1988;  263 10464-10469
  • 57 Romanic A M, Arleth A J, Willette R N, Ohlstein E H. Factor XIIIa cross-links lipoprotein(a) with fibrinogen and is present in human atherosclerotic lesions.  Circ Res . 1998;  83 264-269
  • 58 Hajjar K A, Gavish D, Breslow J L, Nachmann R L. Lipoprotein (a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis.  Nature . 1989;  339 303-305
  • 59 Palabrica T M, Liu A C, Aronovitz M J. Antifibrinolytic activity of apolipoprotein(a) in vivo: human apolipoprotein(a) transgenic mice are resistant to tissue plasminogen activator-mediated fibrinolysis.  Nature Med . 1995;  1 256-259
  • 60 Nieuwenhuizen W, Bos R. Soluble fibrin and degradation products of fibrinogen (FgDP), fibrin (FbDP; D-dimer) and total FgDP and FbDP (TDP). In: Jespersen J, Bertina RM, Haverkate F, eds. Laboratory Techniques in Thrombosis. A Manual. Second Revised Edition of ECAT Assay Procedures Dordrecht: Kluwer Academic Publishers BV 1999: 275-284
  • 61 Koppert P W, Kuipers W, Hoegee-de Nobel B. A quantitative enzyme immunoassay for primary fibrinogenolysis products in plasma.  Thromb Haemost . 1987;  57 25-28
  • 62 Takahashi H, Wada K, Hanano M. Fibrinolysis and fibrinogenolysis in patients with thrombotic disease.  Blood Coag Fibrinolysis . 1992;  3 193-196
  • 63 Agnelli G, Iorio A, Parise P. Fibrinogenolysis and thrombin generation after reduced dose bolus or conventional rt-PA for pulmonary embolism. The Coagulation Project Investigators of the Bolus Alteplase Pulmonary Embolism Group.  Blood Coag Fibrinolysis . 1997;  8 216-222
  • 64 Okajima K, Kohno I, Soe G. Direct evidence for systemic fibrinogenolysis in patients with acquired alpha 2-plasmin inhibitor deficiency.  Am J Hematol . 1994;  45 16-24
  • 65 Nieuwenhuizen W, Vermond A, Voskuilen M. Identification of a site in fibrin(ogen) which is involved in the acceleration of plasminogen activation by tissue-type plasminogen activator.  Biochem Biophys Acta . 1983;  748 86-92
  • 66 Suenson E, Petersen L C. Fibrin and plasminogen structures essential to stimulation of plasmin formation by tissue-type plasminogen activator.  Biochim Biophys Acta . 1986;  870 510-519
  • 67 Suenson E, Lützen O, Thorsen S. Initial plasmin-degradation of fibrin as a basis of a positive feed-back mechanism in fibrinolysis.  Eur J Biochem . 1984;  140 513-522
  • 68 Harpel P C, Chang T S, Verderber E. Tissue plasminogen activator and urokinase mediate the binding of glu-plasminogen to plasma fibrin. I. Evidence for new binding sites in plasma-degraded fibrin.  J Biol Chem . 1985;  260 4432-4440
  • 69 Gurewich V. The sequential, complementary and synergistic activation of fibrin-bound plasminogen by tissue plasminogen activator and pro-urokinase.  Fibrinolysis . 1989;  3 59-66
  • 70 Graeff H, Hafter R. Detection and relevance of cross-linked fibrin derivatives in blood.  Semin Thromb Hemost . 1982;  8 57-68
  • 71 Gaffney P J, Perry M J. ``Giant'' fibrin fragments and thrombosis.  Thromb Haemost . 1985;  54(Abst) 931
  • 72 Gaffney P J, Creighton L C, Harris R, Perry M J. Monoclonal antibodies (MABS) to crosslinked fibrin fragments. Their characterization and potential clinical use. In: Müller-Berghaus G, Scheefers-Borchel U, Selmayr E, eds. Fibrinogen and its Derivatives: Biochemistry, Physiology and Pathophysiology Amsterdam: Excerpta Medica 1986: 273-284
  • 73 Doolittle R F. Fibrinogen and fibrin.  Sci Am . 1981;  245 92-101
  • 74 Walker J B, Nesheim M E. The molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from fibrin clot perfused with plasmin.  J Biol Chem . 1999;  274 5201-5212
  • 75 Fowkes F G, Lowe G D, Housley E. Cross-linked fibrin degradation products, progression of peripheral arterial disease, and risk of coronary heart disease.  Lancet . 1993;  342 84-86
  • 76 Ridker P M, Hennekens C H, Cerskus A, Stampfer M J. Plasma concentration of cross-linked fibrin degradation product (D-dimer) and the risk of future myocardial infarction among apparently healthy men.  Circulation . 1994;  90 2236-2240
  • 77 van der Bom G J, Bots M L, Haverkate F. Fibrinolytic activity in peripheral atherosclerosis in the elderly.  Thromb Haemost . 1999;  81 275-280
  • 78 Adams S A, Kelly S L, Kirsch R E, Shephard E G. Digestion of 125I-labelled plasmin-derived fibrin degradation products by neutrophil lysosomal enzymes.  Blood Coag Fibrinolysis . 1998;  9 301-313
  • 79 Sylven C, Chen J, Bergstrom K. Fibrin(ogen)-derived peptide B beta 30-43 is a sensitive marker of activated neutrophils during fibrinolytic-treated acute myocardial infarction in man.  Am Heart J . 1992;  124 841-845
  • 80 Bos R, van Leuven J C, Stolk J. A monoclonal antibody with high affinity for a neo-antigenic site in fibrinogen degraded by polymorphonuclear leukocyte-derived elastase.  Blood Coag Fibrinolysis . 1995;  6 259-267
  • 81 Blombäck B, Carlsson K, Fatah K. Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation.  Thromb Res . 1994;  75 521-538
  • 82 Sidelmann J, Jespersen J, Gram J. Plasminogen activator activity and plasma-coagulum lysis measured by use of optimized fibrin gel structure preformed in microtiter plates.  Clin Chem . 1995;  41 979-985
  • 83 Astrup T. Biochemistry of blood coagulation.  Acta Phys Scand . 1944;  7(suppl 21) 1-121
  • 84 Shulman S, Ferry J D. The conversion of fibrinogen to fibrin II. The influence of pH and ionic strength on clotting time and clot opacity.  J Phys Colloid Chem . 1950;  54 66-79
  • 85 Nair C H, Dhall D P. Studies on fibrin network structure: the effect of some plasma proteins.  Thromb Res . 1991;  61 315-325
  • 86 Fatah K, Silveira A, Tornvall P. Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age.  Thromb Haemost . 1996;  76 535-540
  • 87 Fatah K, Petersen L C, Wallén P. Modification of fibrin gel structure by interaction with glu- and lys-plasminogen.  Thromb Haemost . 1999;  (suppl) 1886
  • 88 Torbet J. The thrombin activation pathway modulates the assembly, structure and lysis of human plasma clots in vitro.  Thromb Haemost . 1995;  73 785-792
  • 89 Galanakis D K. Inherited dysfibrinogenemia: Emerging abnormal structure associations with pathologic and nonpathologic dysfunctions.  Semin Thromb Hemost . 1993;  19 386-395
  • 90 Mosesson M W. Dysfibrinogenemia and thrombosis.  Semin Thromb Hemost . 1999;  25 311-319
  • 91 Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen.  Thromb Haemost . 1995;  73 151-161
  • 92 Martinez J. Congenital dysfibrinogenemia.  Curr Opin Hematol . 1997;  4 357-365
  • 93 Collet J P, Soria J, Mirshahi M. Dusart syndrome: a new concept of the relationship between fibrin clot architecture and fibrin clot degradability: hypofibrinolysis related to an abnormal clot structure.  Blood . 1993;  82 2462-2469
  • 94 Lijnen H R, Soria J, Soria C. Dysfibrinogenemia (Fibrinogen Dusard) associated with impaired fibrin-enhanced plasminogen activation.  Thromb Haemost . 1984;  51 108-109
  • 95 Giroliami A, Borul A, Fabris F. Studies on factor XIII antigen in congenital factor XIII deficiency. A tentative classification of the disease in two groups.  Folia Haematol . 1978;  105 131-141
  • 96 Mikkola H, Syrjälä M, Rasi V. Deficiency in the A-subunit of coagulation factor XIII: two novel point mutations demonstrate different effects on transcript levels.  Blood . 1994;  84 517-525
  • 97 Kohler H P, Stickland M H, Ossei-Gerning N. Association of a common polymorphism in the factor XIII gene with myocardial infarction.  Thromb Haemost . 1998;  79 8-13
  • 98 Catto A J, Kohler H P, Bannan S. Factor XIII Val 34 Leu: A novel association with primary intracerebral hemorrhage.  Stroke . 1998;  29 813-816
  • 99 Kangsadalampai S, Board P G. The Val34Leu polymorphism in the A subunit of coagulation factor XIII contributes to the large normal range in activity and demonstrates that the activation peptide plays a role in catalytic activity.  Blood . 1998;  92 2766-2770
  • 100 Kohler H P, Grant P J. Clustering of haemostatic risk factors with FXIII Val34Leu in patients with myocardial infarction.  Thromb Haemost . 1998;  80 862(Letter)
  • 101 Meade T W, Brozovic M, Haines A P. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study.  Lancet . 1986;  2 533-537
  • 102 Wilhelmsen L, Svärdsudd K, Korsan-Bengtsen K. Fibrinogen as a risk factor for stroke and myocardial infarction.  N Engl J Med . 1984;  311 501-505
  • 103 Kannel W B, Wolf P A, Castelli W P, D'Agostino R BD. Fibrinogen and risk of cardiovascular disease: the Framingham Study.  JAMA . 1987;  258 1183-1186
  • 104 Stone M C, Thorp J M. Plasma fibrinogen-A major risk factor.  J R Coll Gen Pract . 1985;  12 565-569
  • 105 Heinrich J, Balleisen L, Schulte H. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM Study in healthy men.  Atheroscler Thromb . 1994;  144 54-59
  • 106 Lee A J, Smith W CS, Lowe G DO, Tunstall-Pedoe H. Plasma fibrinogen and coronary risk factors: the Scottish Heart Healthy Study.  J Clin Epidemiol . 1990;  43 913-919
  • 107 Baker I A, Eastham R M, Elwood P C. Haemostatic factors associated with ischemic heart disease in men aged 45 to 64 years. The Speedwell Study.  Br Heart J . 1982;  47 490-494
  • 108 Yarnell J WG, Baker I A, Sweetnam P M. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. The Caerphilly and Speedwell Collaborative Heart Disease Studies.  Circulation . 1991;  83 836-844
  • 109 Cremer P, Nagel D, Labrot B. Lipoprotein Lp(a) as predictor of myocardial infarction in comparison to fibrinogen, LDL cholesterol and other risk factors: results from the prospective Göttingen Risk Incidence and Prevalence Study (GRIPS).  Eur J Clin Invest . 1994;  24 444-453
  • 110 Haverkate F. Thrombosis and disabilities. In: C. Baya, ed. Advances in Medical Biology Amsterdam: IOS Press 1994: 81-103
  • 111 Humphries S E, Henry J A, Montgomery H E. Gene-environment interaction in the determination of levels of haemostatic variables involved in thrombosis and fibrinolysis.  Blood Coag Fibrinolysis . 1999;  10(suppl 1) 17-21
  • 112 Montgomery H E, Clarkson P, Nwose O M. The acute rise in plasma fibrinogen concentration with exercise is influenced by the G-453-A polymorphism of the beta-fibrinogen gene.  Arterioscler Thromb Vasc Biol . 1996;  16 386-391
  • 113 van der Bom G J, de Maat P M M, Bots M L. Elevated plasma fibrinogen. Cause or consequence of cardiovascular disease?.  Arterioscler Thromb Vasc Biol . 1998;  18 621-625
  • 114 de Maat P M M, Kastelein J JP, Jukema J W. -455G/A polymorphism of the β-fibrinogen gene is associated with progression of coronary atherosclerosis in symptomatic men.  Arterioscler Thromb Vasc Biol . 1998;  18 265-271
  • 115 Behague I, Poirier O, Nicaud V. Beta fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction. The ECTIM Study. Etude Cas-Temoins sur l'Infarctus du Myocarde.  Circulation . 1996;  93 440-449
  • 116 Thomas A E, Green F R, Lamlum H, Humphries S E. The association of combined alpha and beta fibrinogen genotype on plasma fibrinogen levels in smokers and non-smokers.  J Med Genet . 1995;  32 585-589
  • 117 Ferrer-Antunes C, de Maat P M, Palmeiro A. Association between polymorphisms in the fibrinogen alpha- and beta- genes on the post-trauma fibrinogen increase.  Thromb Res . 1998;  92 207-212
  • 118 Fatah K, Hamsten A, Blombäck B, Blombäck M. Fibrin gel network characteristics and coronary heart disease: relations to plasma fibrinogen concentration, acute phase protein, serum lipoproteins and coronary atherosclerosis.  Thromb Haemost . 1992;  68 130-135
  • 119 Greilich P E, Carr M E, Zekert S L, Dent R M. Quantitative assessment of platelet function and clot structure in patients with severe coronary artery disease.  Am J Med Sci . 1994;  307 15-20
  • 120 Nair C H, Azhar A, Wilson J D, Dhall D P. Studies on fibrin network structure in human plasma. Part II-Clinical application: diabetes and antidiabetic drugs.  Thromb Res . 1991;  64 477-485
  • 121 Jorneskog G, Egberg N, Fagrell B. Altered properties of the fibrin gel structure in patients with IDDM.  Diabetologia . 1996;  39 1619-1623
  • 122 Dhall D P, Nair C H. Effects of gliclazide on fibrin network.  J Diabetes Complications . 1994;  8 231-234
  • 123 Carr M E, Alving B M. Effect of fibrin structure on plasmin-mediated dissolution of plasma clots.  Blood Coag Fibrinolysis . 1995;  6 567-573
  • 124 Williams S, Fatah K, Ivert T, Blombäck M. The effect of acetylsalicylic acid on fibrin gel lysis by tissue plasminogen activator.  Blood Coag Fibrinolysis . 1995;  6 718-725
  • 125 Borris L C, Sørensen J V, Lassen M R. Components of coagulation and fibrinolysis during thrombosis prophylaxis with a low molecular weight heparin (Enoxaparin) versus Dextran 70 in hip arthroplasty.  Thromb Res . 1991;  63 21-28
  • 126 Noorman F, Barrett-Bergshoeff M M, Bekkers M. Inhibition of mannose receptor-mediated clearance of tissue-type plasminogen activator (t-PA) by dextran: a new explanation for its antithrombotic effect.  Thromb Haemost . 1997;  78 1249-1254
  • 127 Feldman D S, Zuckerman J D, Walters I, Sakales S R. Clinical efficacy of aspirin and dextran for thromboprophylaxis in geriatric hip fracture patients.  J Orthop Trauma . 1993;  7 1-5
  • 128 Oertli D, Hess P, Durig M. Prevention of deep vein thrombosis in patients with hip fractures: low molecular weight heparin versus dextran.  World J Surg . 1992;  16 980-984
  • 129 Matzsch T, Bergqvist D, Fredin H, Hedner U. Low molecular weight heparin compared with dextran as prophylaxis against thrombosis after total hip replacement.  Acta Chir Scand . 1990;  156 445-450
  • 130 Ljungström K G. The antithrombotic efficacy of dextran.  Acta Chir Scand Suppl . 1988;  543 26-30
  • 131 Sørensen J D, Olsen S F, Secher N J, Jespersen J. Effects of fish oil supplementation in late pregnancy on blood lipids, serum urate, coagulation and fibrinolysis. A randomised controlled study.  Fibrinolysis . 1994;  8 54-60
  • 132 Gabriel D A, Muga K, Boothroyd E M. The effect of fibrin structure on fibrinolysis.  J Biol Chem . 1992;  267 24259-24263
  • 133 Collet J P, Montalescot G, Soria J. Pharmacological remodelling of the thrombus architecture.  Blood Coag Fibrinolysis . 1999;  10(suppl 1) 49-53
  • 134 Pring J B, Gaffney P J. Fibrin formation-Influence of various components of coagulation and fibrinolysis on clot structure.  Thromb Haemost . 1991;  65 735(Abst)
  • 135 Blombäck B, Carlsson K, Hessel B. Native fibrin gel networks observed by 3D microscopy, permeation and turbidity.  Biochim Biophys Acta . 1989;  997 96-110
  • 136 Zidansek A, Blinc A. The influence of transport parameters and enzyme kinetics of the fibrinolytic system on thrombolysis: mathematical modelling of two idealised cases.  Thromb Haemost . 1991;  65 553-559
  • 137 Wu J H, Siddiqui K, Diamond S L. Transport phenomena and clot dissolving therapy: an experimental investigation of diffusion-controlled and permeation-enhanced fibrinolysis.  Thromb Haemost . 1994;  72 105-112
  • 138 Anand S, Diamond S L. Computer simulation of systemic circulation and clot lysis dynamics during thrombolytic therapy that accounts for inner clot transport and reaction.  Circulation . 1996;  94 763-774
    >