Semin Thromb Hemost 2000; 26(5): 521-528
DOI: 10.1055/s-2000-13208
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Endothelium and Lipoproteins: Insights from Recent Cell Biology and Animal Studies

Daniel J. Rader1 , Klaus A. Dugi2
  • 1Departments of Medicine and Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
  • 2Department of Internal Medicine I, Endocrinology and Metabolism, Universitätsklinikum Heidelberg, Heidelberg University, Heidelberg, Germany
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

Both lipoproteins and the endothelium play critical roles in the initiation and progression of atherosclerosis. An understanding of the interactions between lipoproteins and the endothelium facilitates our understanding of atherogenesis and could suggest new therapeutic targets. Lipoproteins have important effects on endothelial cells. Atherogenic lipoproteins such as remnants, low-density lipoprotein (LDL), and oxidized LDL act on endothelial cells to cause upregulation of endothelial adhesion molecules and selectins, promotion of oxygen radicals, increased apoptosis, and reduced endothelium-dependent relaxation. Antiatherogenic lipoproteins such as HDL protect endothelial cells from oxidative stress and apoptosis and reduce adhesion molecule expression. Conversely, the endothelium has major effects on lipoprotein metabolism and function. Several lipases, including lipoprotein lipase, hepatic lipase, endothelial lipase, and secretory phospholipase A2, are bound to the endothelial cell matrix and have the ability to hydrolyze lipoprotein triglycerides and phospholipids. Furthermore, endothelial cells express a variety of lipoprotein receptors including the VLDL receptor, scavenger receptor A, SR-BI, CD36, and LOX-1, although little is known about their function on endothelial cells. Although a great deal is known about endothelial-lipoprotein interactions, more research is needed in this important area.

REFERENCES

  • 1 Moers A, Fenselau S, Schrezenmeir J. Chylomicrons induce E-selectin and VCAM-1 expression in endothelial cells.  Exp Clin Endocrinol Diabetes . 1997;  105(Suppl 2) 35-37
  • 2 Allen S, Khan S, Al Mohanna F, Batten P, Yacoub M. Native low density lipoprotein-induced calcium transients trigger VCAM-1 and E-selectin expression in cultured human vascular endothelial cells.  J Clin Invest . 1998;  101 1064-1075
  • 3 Zhu Y, Liao H L, Lin J H, Verna L, Stemerman M B. Low-density lipoprotein augments interleukin-1-induced vascular adhesion molecule expression in human endothelial cells.  Atherosclerosis . 1999;  144 357-365
  • 4 Weber C, Erl W, Weber K S, Weber P C. Effects of oxidized low density lipoprotein, lipid mediators and statins on vascular cell interactions.  Clin Chem Lab Med . 1999;  37 243-251
  • 5 Erl W, Weber P C, Weber C. Monocytic cell adhesion to endothelial cells stimulated by oxidized low density lipoprotein is mediated by distinct endothelial ligands.  Atherosclerosis . 1998;  136 297-303
  • 6 Khan B V, Parthasarathy S S, Alexander R W, Medford R M. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells.  J Clin Invest . 1995;  95 1262-1270
  • 7 Shih P T, Elices M J, Fang Z T. Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating beta1 integrin.  J Clin Invest . 1999;  103 613-625
  • 8 Vora D K, Fang Z T, Liva S M. Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression.  Circ Res . 1997;  80 810-818
  • 9 Collins T. Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion.  Lab Invest . 1993;  68 499-508
  • 10 Maziere C, Auclair M, Djavaheri-Mergny M, Packer L, Maziere J C. Oxidized low density lipoprotein induces activation of the transcription factor NF kappa B in fibroblasts, endothelial and smooth muscle cells.  Biochem Mol Biol Int . 1996;  39 1201-1207
  • 11 Maziere C, Djavaheri-Mergny M, Frey-Fressart V, Delattre J, Maziere J C. Copper and cell-oxidized low-density lipoprotein induces activator protein 1 in fibroblasts, endothelial and smooth muscle cells.  FEBS Lett . 1997;  409 351-356
  • 12 Galle J, Schneider R, Heinloth A. Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: role of oxidative stress.  Kidney Int . 1999;  55 1450-1461
  • 13 Klouche M, May A E, Hemmes M. Enzymatically modified, nonoxidized LDL induces selective adhesion and transmigration of monocytes and T-lymphocytes through human endothelial cell monolayers.  Arterioscler Thromb Vasc Biol . 1999;  19 784-793
  • 14 Chen J K, Hoshi H, McClure D B, McKeehan W L. Role of lipoproteins in growth of human adult arterial endothelial and smooth muscle cells in low lipoprotein-deficient serum.  J Cell Physiol . 1986;  129 207-214
  • 15 Ko Y, Totzke G, Seewald S. Native low-density lipoprotein (LDL) induces the expression of the early growth response gene-1 in human umbilical arterial endothelial cells.  Eur J Cell Biol . 1995;  68 306-312
  • 16 Chow S E, Lee R S, Shih S H, Chen J K. Oxidized LDL promotes vascular endothelial cell pinocytosis via a prooxidation mechanism.  FASEB J . 1998;  12 823-830
  • 17 Sachinidis A, Kettenhofen R, Seewald S. Evidence that lipoproteins are carriers of bioactive factors.  Arterioscler Thromb Vasc Biol . 1999;  19 2412-2421
  • 18 Myers S J, Stanley K K. Src family kinase activation in glycosphingolipid-rich membrane domains of endothelial cells treated with oxidised low density lipoprotein.  Atherosclerosis . 1999;  143 389-397
  • 19 Murugesan G, Chisolm G M, Fox P L. Oxidized low density lipoprotein inhibits the migration of aortic endothelial cells in vitro.  J Cell Biol . 1993;  120 1011-1019
  • 20 Murugesan G, Fox P L. Role of lysophosphatidylcholine in the inhibition of endothelial cell motility by oxidized low density lipoprotein.  J Clin Invest . 1996;  97 2736-2744
  • 21 Sata M, Walsh K. Oxidized LDL activates fas-mediated endothelial cell apoptosis.  J Clin Invest . 1998;  102 1682-1689
  • 22 Dimmeler S, Haendeler J, Galle J, Zeiher A M. Oxidized low-density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like proteases. A mechanistic clue to the ``response to injury'' hypothesis.  Circulation . 1997;  95 1760-1763
  • 23 Li D, Yang B, Mehta J L. Ox-LDL induces apoptosis in human coronary artery endothelial cells: Role of PKC, PTK, bcl-2, and Fas.  Am J Physiol . 1998;  275 H568-H576
  • 24 Rong J X, Rangaswamy S, Shen L. Arterial injury by cholesterol oxidation products causes endothelial dysfunction and arterial wall cholesterol accumulation.  Arterioscler Thromb Vasc Biol . 1998;  18 1885-1894
  • 25 Doi H, Kugiyama K, Ohgushi M. Remnants of chylomicron and very low density lipoprotein impair endothelium-dependent vasorelaxation.  Atherosclerosis . 1998;  137 341-349
  • 26 Grieve D J, Avella M A, Botham K M, Elliott J. Effects of chylomicrons and chylomicron remnants on endothelium-dependent relaxation of rat aorta.  Eur J Pharmacol . 1998;  348 181-190
  • 27 Doi H, Kugiyama K, Ohgushi M. Membrane active lipids in remnant lipoproteins cause impairment of endothelium-dependent vasorelaxation.  Arterioscler Thromb Vasc Biol . 1999;  19 1918-1924
  • 28 Fontana L, McNeill K L, Ritter J M, Chowienczyk P J. Effects of vitamin C and of a cell permeable superoxide dismutase mimetic on acute lipoprotein induced endothelial dysfunction in rabbit aortic rings.  Br J Pharmacol . 1999;  126 730-734
  • 29 Napoli C, Paterno R, Faraci F M. Mildly oxidized low-density lipoprotein impairs responses of carotid but not basilar artery in rabbits.  Stroke . 1997;  28 2266-2271
  • 30 Deckert V, Persegol L, Viens L. Inhibitors of arterial relaxation among components of human oxidized low-density lipoproteins. Cholesterol derivatives oxidized in position 7 are potent inhibitors of endothelium-dependent relaxation.  Circulation . 1997;  95 723-731
  • 31 Keaney J FJ, Guo Y, Cunningham D. Vascular incorporation of alpha-tocopherol prevents endothelial dysfunction due to oxidized LDL by inhibiting protein kinase C stimulation.  J Clin Invest . 1996;  98 386-394
  • 32 Jay M T, Chirico S, Siow R C. Modulation of vascular tone by low density lipoproteins: effects on l-arginine transport and nitric oxide synthesis.  Exp Physiol . 1997;  82 349-360
  • 33 Nakashima Y, Raines E W, Plump A S, Breslow J L, Ross R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the apoE-deficient mouse.  Arterioscler Thromb Vasc Biol . 1998;  18 842-851
  • 34 Trieu V N, Uckun F M. Male-associated hypertension in LDL-R deficient mice.  Biochem Biophys Res Commun . 1998;  247 277-279
  • 35 Yang R, Powell-Braxton L, Ogaoawara A K. Hypertension and endothelial dysfunction in apolipoprotein E knockout mice.  Arterioscler Thromb Vasc Biol . 1999;  19 2762-2768
  • 36 Deckert V, Lizard G, Duverger N. Impairment of endothelium-dependent arterial relaxation by high-fat feeding in apoE-deficient mice: Toward normalization by human apoA-I expression.  Circulation . 1999;  100 1230-1235
  • 37 Matthys K E, Van Hove E C, Kockx M M. Exposure to oxidized low-density lipoprotein in vivo enhances intimal thickening and selectively impairs endothelium-dependent dilation in the rabbit.  Cardiovasc Res . 1998;  37 239-246
  • 38 Rothblat G H, de la Llera-Moya M, Atger V. Cell cholesterol efflux: Integration of old and new observations provides new insights.  J Lipid Res . 1999;  40 781-796
  • 39 Banka C L. High density lipoprotein and lipoprotein oxidation.  Curr Opin Lipidol . 1996;  7 139-142
  • 40 Cockerill G, Rye K, Gamble J, Vadas M A, Barter P J. High density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules.  Arterioscler Thromb Vasc Biol . 1995;  15 1987-1994
  • 41 Baker P W, Rye K A, Gamble J R, Vadas M A, Barter P J. Ability of reconstituted high density lipoproteins to inhibit cytokine-induced expression of vascular cell adhesion molecule-1 in human umbilical vein endothelial cells.  J Lipid Res . 1999;  40 345-353
  • 42 Stannard A K, Riddell D R, Bradley N J. Apolipoprotein E and regulation of cytokine-induced cell adhesion molecule expression in endothelial cells.  Atherosclerosis . 1998;  139 57-64
  • 43 Ota Y, Kugiyama K, Sugiyama S. Complexes of apoA-I with phosphatidylcholine suppress dysregulation of arterial tone by oxidized LDL.  Am J Physiol . 1997;  273 H1215-H1222
  • 44 Honda H M, Wakamatsu B K, Goldhaber J I. High-density lipoprotein increases intracellular calcium levels by releasing calcium from internal stores in human endothelial cells.  Atherosclerosis . 1999;  143 299-306
  • 45 Murugesan G, Sa G, Fox P L. High-density lipoprotein stimulates endothelial cell movement by a mechanism distinct from basic fibroblast growth factor.  Circ Res . 1994;  74 1149-1156
  • 46 Suc I, Escargueil-Blanc I, Troly M, Salvayre R, Negre-Salvayre A. HDL and ApoA prevent cell death of endothelial cells induced by oxidized LDL.  Arterioscler Thromb Vasc Biol . 1997;  17 2159-2166
  • 47 Rubin E, Krauss R, Spangler E, Verstuyft J, Clift S. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI.  Nature . 1991;  353 265-267
  • 48 Paszty C, Maeda N, Verstuyft J, Rubin E M. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice.  J Clin Invest . 1994;  94 899-903
  • 49 Plump A, Scott C, Breslow J. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse.  Proc Natl Acad Sci USA . 1994;  91 9607-9611
  • 50 Duverger N, Kruth H, Emmanuel F. Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits.  Circulation . 1996;  94 713-717
  • 51 Benoit P, Emmanuel F, Caillaud J M. Somatic gene transfer of human apoA-I inhibits atherosclerosis progression in mouse models.  Circulation . 1999;  99 105-110
  • 52 Tangirala R K, Tsukamoto K, Chun S H. Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice.  Circulation . 1999;  100 1816-1822
  • 53 Lebuffe G, Boullier A, Tailleux A. Endothelial derived vasorelaxation is impaired in human APO A-I transgenic rabbits.  Biochem Biophys Res Commun . 1997;  241 205-211
  • 54 Dansky H M, Charlton S A, Barlow C B. Apo A-I inhibits foam cell formation in Apo E-deficient mice after monocyte adherence to endothelium.  J Clin Invest . 1999;  104 31-39
  • 55 Goldberg I J. Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherogenesis.  J Lipid Res . 1996;  37 693-707
  • 56 Santamarina-Fojo S, Dugi K A. Structure, function and role of lipoprotein lipase in lipoprotein metabolism.  Curr Opin Lipidol . 1994;  5 117-125
  • 57 Coleman T, Seip R L, Gimble J M. COOH-terminal disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity.  J Biol Chem . 1995;  270 12518-12525
  • 58 Hokanson J E. Lipoprotein lipase gene variants and risk of coronary disease: A quantitative analysis of population-based studies.  Int J Clin Lab Res . 1997;  27 24-34
  • 59 Blades B, Vega G L, Grundy S M. Activities of lipoprotein lipase and hepatic triglyceride lipase in postheparin plasma of patients with low concentrations of HDL cholesterol.  Arterioscler Thromb Vasc Biol . 1993;  13 1227-1235
  • 60 Clee S M, Zhang H, Bissada N. Relationship between lipoprotein lipase and high density lipoprotein cholesterol in mice: Modulation by cholesteryl ester transfer protein and dietary status.  J Lipid Res . 1997;  38 2079-2089
  • 61 Levak-Frank S, Weinstock P H, Hayek T. Induced mutant mice expressing lipoprotein lipase exclusively in muscle have subnormal triglycerides yet reduced high density lipoprotein cholesterol levels in plasma.  J Biol Chem . 1997;  272 17182-17190
  • 62 Levak-Frank S, Hofmann W, Weinstock P H. Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels.  Proc Natl Acad Sci USA . 1999;  96 3165-3170
  • 63 Shimada M, Ishibashi S, Inaba T. Suppression of diet-induced atherosclerosis in low density lipoprotein receptor knockout mice overexpressing lipoprotein lipase.  Proc Natl Acad Sci USA . 1996;  93 7242-7246
  • 64 Yagyu H, Ishibashi S, Chen Z. Overexpressed lipoprotein lipase protects against atherosclerosis in apolipoprotein E knockout mice.  J Lipid Res . 1999;  40 1677-1685
  • 65 Tsutsumi K, Inoue Y, Shima A. The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long-term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis.  J Clin Invest . 1993;  92 411-417
  • 66 Hara T, Kusunoki M, Tsutsumi K. A lipoprotein lipase activator, NO-1886, improves endothelium-dependent relaxation of rat aorta associated with aging.  Eur J Pharmacol . 1998;  350 75-79
  • 67 Rutledge J C, Woo M M, Rezai A A, Curtiss L K, Goldberg I J. Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products.  Circ Res . 1997;  80 819-828
  • 68 Babaev V R, Fazio S, Gleaves L A. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo.  J Clin Invest . 1999;  103 1697-1705
  • 69 Santamarina-Fojo S, Haudenschild C, Amar M. The role of hepatic lipase in lipoprotein metabolism and atherosclerosis.  Curr Opin Lipidol . 1998;  9 211-219
  • 70 Busch S J, Barnhart R L, Martin G A. Human hepatic triglyceride lipase expression reduces high density lipoprotein and aortic cholesterol in cholesterol-fed transgenic mice.  J Biol Chem . 1994;  269 16376-16382
  • 71 Fan J, Wang J, Bensadoun A. Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins.  Proc Natl Acad Sci USA . 1994;  91 8724-8728
  • 72 Mezdour H, Jones R, Dengremont C, Castro G, Maeda N. Hepatic lipase deficiency increases plasma cholesterol but reduces susceptibility to atherosclerosis in apolipoprotein E-deficient mice.  J Biol Chem . 1997;  272 13570-13575
  • 73 Hegele R, Little J A, Vezina C. Hepatic lipase deficiency: Clinical, biochemical, and molecular genetic characteristics.  Arterioscler Thromb . 1993;  13 720-728
  • 74 Cohen J C, Vega G L, Grundy S M. Hepatic lipase: New insights from genetic and metabolic studies.  Curr Opin Lipidol . 1999;  10 259-267
  • 75 Jaye M, Lynch K J, Krawiec J. A novel endothelial-derived lipase that modulates HDL metabolism.  Nature Genet . 1999;  21 424-428
  • 76 Hirata K, Diechek H L, Cioffi J A. Cloning of a unique lipase from endothelial cells extends the lipase gene family.  J Biol Chem . 1999;  274 14170-14175
  • 77 Dugi K A, Dichek H L, Talley G D, Brewer Jr B H, Santamarina-Fojo S. Human lipoprotein lipase: The loop covering the catalytic site is essential for interaction with lipid substrates.  J Biol Chem . 1992;  267 25086-25091
  • 78 Dugi K A, Dichek H L, Santamarina-Fojo S. Human hepatic and lipoprotein lipase: The loop covering the catalytic site mediates lipase substrate specificity.  J Biol Chem . 1995;  270 25396-25401
  • 79 Pittman R C, Taylor C AJ. Methods for assessment of tissue sites of lipoprotein degradation.  Methods Enzymol . 1986;  129 612-628
  • 80 Yokote K, Morisaki N, Zenibayashi M. The phospholipase-A2 reaction leads to increased monocyte adhesion of endothelial cells via the expression of adhesion molecules.  Eur J Biochem . 1993;  217 723-729
  • 81 Murakami M, Kudo I, Inoue K. Molecular nature of phospholipases A2 involved in prostaglandin I2 synthesis in human umbilical vein endothelial cells. Possible participation of cytosolic and extracellular type II phospholipases A2.  J Biol Chem . 1993;  268 839-844
  • 82 Nevalainen T J, Laine V JO, Grass D S. Expression of human group II phospholipase A2 in transgenic mice.  J Histochem Cytochem . 1997;  45 1109-1119
  • 83 de Beer C F, de Beer C M, van der Westhuyzen R D. Secretory non-pancreatic phospholipase A2: Influence on lipoprotein metabolism.  J Lipid Res . 1997;  38 2232-2239
  • 84 Tietge U JF, Maugeais C, Cain W. Overexpression of secretory phospholipase A2 causes rapid catabolism and altered tissue uptake of HDL cholesteryl ester and apolipoprotein A-I.  J Biol Chem, in press.
  • 85 Leitinger N, Watson A D, Hama S Y. Role of group II secretory phospholipase A2 in atherosclerosis: 2. Potential involvement of biologically active oxidized phospholipids.  Arterioscler Thromb Vasc Biol . 1999;  19 1291-1298
  • 86 Ivandic B, Castellani L W, Wang X P. Role of group II secretory phospholipase A2 in atherosclerosis. 1. Increased atherogenesis and altered lipoproteins in transgenic mice expressing group IIa phospholipase A2.  Arterioscler Thromb Vasc Biol . 1999;  19 1284-1290
  • 87 Wyne K L, Pathak K, Seabra M C, Hobbs H H. Expression of the VLDL receptor in endothelial cells.  Arterioscler Thromb Vasc Biol . 1996;  16 407-415
  • 88 Hiltunen T P, Luoma J S, Nikkari T, Yla-Herttuala S. Expression of LDL receptor, VLDL receptor, LDL receptor-related protein, and scavenger receptor in rabbit atherosclerotic lesions: Marked induction of scavenger receptor and VLDL receptor expression during lesion development.  Circulation . 1998;  97 1079-1086
  • 89 Daugherty A, Cornicelli J A, Welch K, Sendobry S M, Rateri D L. Scavenger receptors are present on rabbit aortic endothelial cells in vivo.  Arterioscler Thromb Vasc Biol . 1997;  17 2369-2375
  • 90 Acton S, Rigotti A, Landschultz K T. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.  Science . 1996;  271 460-461
  • 91 Calvo D, Gomez-Corondado D, Lasuncion M A, Vega M A. CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins.  Arterioscler Thromb Vasc Biol . 1997;  17 2341-2349
  • 92 Hatzopoulos A K, Rigotti A, Rosenberg R D, Krieger M. Temporal and spatial pattern of expression of the HDL receptor SR-BI during murine embryogenesis.  J Lipid Res . 1998;  39 495-508
  • 93 Calvo D, Gomez-Coronado D, Suarez Y, Lasuncion M A, Vega M A. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL.  J Lipid Res . 1998;  39 777-788
  • 94 Daviet L, McGregor J L. Vascular biology of CD36: Roles of this new adhesion molecule family in different disease states.  Thromb Haemost . 1997;  78 65-69
  • 95 Febbraio M, Abumrad N A, Hajjar D P. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism.  J Biol Chem . 1999;  274 19055-19062
  • 96 Sawamura T, Kume N, Aoyama T. An endothelial receptor for oxidized low-density lipoprotein.  Nature . 1997;  386 73-77
  • 97 Kataoka H, Kume N, Miyamoto S. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions.  Circulation . 1999;  99 3110-3117
  • 98 Morawietz H, Rueckschloss U, Niemann B. Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein.  Circulation . 1999;  100 899-902
    >