Subscribe to RSS

DOI: 10.1055/s-0045-1814368
The cerebellum in dystonia: key player or background support?
Authors
Abstract
Since the 1960s, the pathophysiology of dystonia has been primarily attributed to dysfunction of the basal ganglia and their associated pathways. However, growing evidence from both basic and clinical research has highlighted the additional importance of the cerebellum, suggesting that dystonia arises from a motor-network dysfunction involving not only the basal ganglia, but also the cerebellum. Neuroimaging studies reinforce this concept, revealing structural and functional abnormalities in the cerebellum and its afferent pathways in patients with dystonia. Moreover, the dual involvement of the cerebellum and basal ganglia may help explain the frequent co-occurrence of dystonia in patients with ataxia and vice versa. The present review aims to integrate evidence from pathophysiology, clinical studies, genetics, and neuroimaging to underscore the crucial role of the cerebellum in the genesis of dystonia.
Keywords
Dystonia - Cerebellum - Purkinje Cells - Inferior Olivary Complex - Cholinergic Antagonists - Basal GangliaAuthors' Contributions
Conceptualization: CHFC; Methodology: CHFC; Project administration: CHFC, HAGT; Supervision: CHFC, HAGT; Validation: CHFC, HAGT; Visualization: CHFC, HAGT; Writing – original draft: CHFC; Writing – review & editing: CHFC, HAGT.
Data Availability Statement
Data will be available upon request to the corresponding author.
Editor-in-Chief: Ayrton Roberto Massaro (ORCID: 0000-0003-2305-1073).
Associate Editor: Orlando Graziani Povoas Barsottini (ORCID: 0000-0002-0107-0831).
Publication History
Received: 05 September 2025
Accepted: 13 October 2025
Article published online:
22 December 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua Rego Freitas, 175, loja 1, República, São Paulo, SP, CEP 01220-010, Brazil
Carlos Henrique Ferreira Camargo, Hélio Afonso Ghizoni Teive. The cerebellum in dystonia: key player or background support?. Arq Neuropsiquiatr 2025; 83: s00451814368.
DOI: 10.1055/s-0045-1814368
-
References
- 1 Camargo CH, Teive HA. Evolution of the concept of dystonia. Arq Neuropsiquiatr 2014; 72 (07) 559-561
- 2 Albanese A, Bhatia KP, Fung VSC. et al. Definition and Classification of Dystonia. Mov Disord 2025; 40 (07) 1248-1259
- 3 Jinnah HA, Hess EJ. A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum?. Neurology 2006; 67 (10) 1740-1741
- 4 Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA. The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain 2008; 131 (Pt 9): 2499-2509
- 5 Oppenheim H. Über eine eigenartige Krampfkrankheit des kindlichen und jugendlichen Alters (Dysbasia lordotica progressiva, Dystonia musculorum deformans). Neurol Centrabl 1911; 30: 1090-1107
- 6 Hallett M. Functional Neurologic Disorder, La Lésion Dynamique: 2024 Wartenberg Lecture. Neurology 2024; 103 (11) e210051
- 7 Schwalbe MW. Eine eigntumliche tonische Krampfform mit hysterischen Symptomen. Berlin: Schade; 1908
- 8 Lanska DJ. Early Controversies over Athetosis: I. Clinical Features, Differentiation from other Movement Disorders, Associated Conditions, and Pathology. Tremor Other Hyperkinet Mov (N Y) 2013; ;3:tre-03-132-2918-1
- 9 Goetz CG, Chmura TA, Lanska DJ. History of dystonia: part 4 of the MDS-sponsored history of movement disorders exhibit, Barcelona, June, 2000. Mov Disord 2001; 16 (02) 339-345
- 10 Herz E. Dystonia: I. Historical review: analysis of dystonic symptoms and physiologic mechanisms involved. Arch Neurol Psychiatry 1944; 51 :(4) 305-318
- 11 Zeman W, Dyken P. Dystonia musculorum deformans. Clinical, genetic and pathoanatomical studies. Psychiatr Neurol Neurochir 1967; 70 (02) 77-121
- 12 Martinez AR, Faber I, Martins Jr CR. et al. Derek Denny-Brown: the man behind the ganglia. Arq Neuropsiquiatr 2017; 75 (02) 127-129
- 13 Marsden CD. Motor disorders in basal ganglia disease. Hum Neurobiol 1984; 2 (04) 245-250
- 14 Gowers WR. A manual of diseases of the nervous system. London: Churchill; 1888. .V. 2:659
- 15 Lenka A, Jankovic J. Peripherally-induced Movement Disorders: An Update. Tremor Other Hyperkinet Mov (N Y) 2023; 13: 8
- 16 Kaji R, Bhatia K, Graybiel AM. Pathogenesis of dystonia: is it of cerebellar or basal ganglia origin?. J Neurol Neurosurg Psychiatry 2018; 89 (05) 488-492
- 17 Kaji R, Rothwell JC, Katayama M. et al. Tonic vibration reflex and muscle afferent block in writer's cramp. Ann Neurol 1995; 38 (02) 155-162
- 18 Walshe FMR. Observations on the nature of the muscular rigidity of paralysis agitans, and on its relationship to tremor. Brain 1924; 47 (02) 159-177
- 19 Kaji R. Direct cerebello-striatal loop in dystonia as a possible new target for deep brain stimulation: A revised view of subcortical pathways involved. Front Neurol 2022; 13: 912818
- 20 Camargo CHF, Ferreira-Peruzzo SA, Ribas DIR, Franklin GL, Teive HAG. Imbalance and gait impairment in Parkinson's disease: discussing postural instability and ataxia. Neurol Sci 2024; 45 (04) 1377-1388
- 21 Wang AS, Alkhodair IM, Kilbane CW. The role of the cerebellum in dystonia. Dystonia 2025; 4: 14692
- 22 Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990; 13 (07) 266-271
- 23 Graybiel AM. Surprises From the Basal Ganglia: Stop and Go Have New Meaning. Mov Disord 2025; 40 (10) 2077-2082
- 24 Lehéricy S, Benali H, Van de Moortele PF. et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci U S A 2005; 102 (35) 12566-12571
- 25 Goto S, Lee LV, Munoz EL. et al. Functional anatomy of the basal ganglia in X-linked recessive dystonia-parkinsonism. Ann Neurol 2005; 58 (01) 7-17
- 26 Hanssen H, Heldmann M, Prasuhn J. et al. Basal ganglia and cerebellar pathology in X-linked dystonia-parkinsonism. Brain 2018; 141 (10) 2995-3008
- 27 Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 2010; 107 (18) 8452-8456
- 28 Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 2018; 19 (06) 338-350
- 29 Morigaki R, Miyamoto R, Matsuda T, Miyake K, Yamamoto N, Takagi Y. Dystonia and Cerebellum: From Bench to Bedside. Life (Basel) 2021; 11 (08) 776
- 30 Chen CH, Fremont R, Arteaga-Bracho EE, Khodakhah K. Short latency cerebellar modulation of the basal ganglia. Nat Neurosci 2014; 17 (12) 1767-1775
- 31 Cover KK, Gyawali U, Kerkhoff WG. et al. Activation of the rostral intralaminar thalamus drives reinforcement through striatal dopamine release. Cell Rep 2019; 26 (06) 1389-1398.e3
- 32 Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2019; 49 (05) 604-622
- 33 Picconi B, Centonze D, Håkansson K. et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci 2003; 6 (05) 501-506
- 34 Calabresi P, Picconi B, Tozzi A, Di Filippo M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 2007; 30 (05) 211-219
- 35 Ruge D, Cif L, Limousin P. et al. Shaping reversibility? Long-term deep brain stimulation in dystonia: the relationship between effects on electrophysiology and clinical symptoms. Brain 2011; 134 (Pt 7): 2106-2115
- 36 Van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. eLife 2024; 12: RP91483
- 37 Rossi M, Balint B, Millar Vernetti P, Bhatia KP, Merello M. Genetic Dystonia-ataxia Syndromes: Clinical Spectrum, Diagnostic Approach, and Treatment Options. Mov Disord Clin Pract 2018; 5 (04) 373-382
- 38 Shakkottai VG, Batla A, Bhatia K. et al. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. Cerebellum 2017; 16 (02) 577-594
- 39 Shakkottai VG. Physiologic changes associated with cerebellar dystonia. Cerebellum 2014; 13 (05) 637-644
- 40 LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord 2003; 18 (01) 60-69
- 41 Waln O, LeDoux MS. Delayed-onset oromandibular dystonia after a cerebellar hemorrhagic stroke. Parkinsonism Relat Disord 2010; 16 (09) 623-625
- 42 Le Ber I, Clot F, Vercueil L. et al. Predominant dystonia with marked cerebellar atrophy: a rare phenotype in familial dystonia. Neurology 2006; 67 (10) 1769-1773
- 43 Prudente CN, Pardo CA, Xiao J. et al. Neuropathology of cervical dystonia. Exp Neurol 2013; 241: 95-104
- 44 Kuo PH, Gan SR, Wang J. et al. Dystonia and ataxia progression in spinocerebellar ataxias. Parkinsonism Relat Disord 2017; 45: 75-80
- 45 Schmitz-Hübsch T, Coudert M, Bauer P. et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology 2008; 71 (13) 982-989
- 46 Lin Y, Zheng JY, Jin YH, Xie YC, Jin ZB. Trinucleotide expansions in the SCA7 gene in a large family with spinocerebellar ataxia and craniocervical dystonia. Neurosci Lett 2008; 434 (02) 230-233
- 47 Gaillard N, Castelnovo G, Brice A, Labauge P. . [Writer's cramp secondary to spinocerebellar ataxia type 7.] Rev Neurol (Paris) 2007; 163 (05) 589-591
- 48 Ushe M, Perlmutter JS. Oromandibular and lingual dystonia associated with spinocerebellar ataxia type 8. Mov Disord 2012; 27 (14) 1741-1742
- 49 Neo S, Magrinelli F, Cordivari C, Bhatia KP. Tongue Protrusion and Feeding Dystonia Can Develop in PPP2R2B-Related Spinocerebellar Ataxia. Mov Disord Clin Pract 2024; 11 (05) 578-579
- 50 Schmitz-Hübsch T, Lux S, Bauer P. et al. Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adult-onset disorder. Ann Clin Transl Neurol 2021; 8 (04) 774-789
- 51 Rolfs A, Koeppen AH, Bauer I. et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 2003; 54 (03) 367-375
- 52 Kurihara M, Ishiura H, Sasaki T. et al. Novel De Novo KCND3 Mutation in a Japanese Patient with Intellectual Disability, Cerebellar Ataxia, Myoclonus, and Dystonia. Cerebellum 2018; 17 (02) 237-242
- 53 Sharawat IK, Panda PK, Bhunia NS, Dawman L. Clinical Spectrum of TGM6-Related Movement Disorders: A New Report with a Pooled Analysis of 48 Patients. J Neurosci Rural Pract 2021; 12 (04) 656-665
- 54 Fasano A, Hodaie M, Munhoz RP, Rohani M. SCA 35 presenting as isolated treatment-resistant dystonic hand tremor. Parkinsonism Relat Disord 2017; 37: 118-119
- 55 Baviera-Muñoz R, Carretero-Vilarroig L, Muelas N. et al. Spinocerebellar Ataxia 36 is a Frequent Cause of Hereditary Ataxia in Eastern Spain. Mov Disord Clin Pract 2023; 10 (06) 992-997
- 56 Ravel JM, Benkirane M, Calmels N. et al. Expanding the clinical spectrum of STIP1 homology and U-box containing protein 1-associated ataxia. J Neurol 2021; 268 (05) 1927-1937
- 57 Hatano T, Okuma Y, Iijima M, Fujishima K, Goto K, Mizuno Y. Cervical dystonia in dentatorubral-pallidoluysian atrophy. Acta Neurol Scand 2003; 108 (04) 287-289
- 58 Vemula SR, Xiao J, Bastian RW, Momčilović D, Blitzer A, LeDoux MS. Pathogenic variants in TUBB4A are not found in primary dystonia. Neurology 2014; 82 (14) 1227-1230
- 59 Nikolov P, Hassan SS, Aytulun A. et al. Cerebellar Involvement in DYT-THAP1 Dystonia. Cerebellum 2019; 18 (05) 969-971
- 60 Drivenes B, Born AP, Ek J, Dunoe M, Uldall PV. A child with myoclonus-dystonia (DYT11) misdiagnosed as atypical opsoclonus myoclonus syndrome. Eur J Paediatr Neurol 2015; 19 (06) 719-721
- 61 Vezyroglou A, Akilapa R, Barwick K. et al. The Phenotypic Continuum of ATP1A3-Related Disorders. Neurology 2022; 99 (14) e1511-e1526
- 62 Fu F, Kang Y, Li J. et al. A Novel ANO3 Gene Mutation Associated with a Dystonia-Ataxia Syndrome. Mov Disord Clin Pract 2024; 11 (12) 1632-1634
- 63 Damásio J, Santos M, Samões R. et al. Novel KMT2B mutation causes cerebellar ataxia: Expanding the clinical phenotype. Clin Genet 2021; 100 (06) 743-747
- 64 Taiwo FT, Adebayo PB. Neuroimaging findings in DYT1 dystonia and the pathophysiological implication: A systematic review. Brain Behav 2023; 13 (06) e3023
- 65 Duvoisin RC. Cholinergic-anticholinergic antagonism in parkinsonism. Arch Neurol 1967; 17 (02) 124-136
- 66 Bohnen NI, Kanel P, Koeppe RA. et al. Regional cerebral cholinergic nerve terminal integrity and cardinal motor features in Parkinson's disease. Brain Commun 2021; 3 (02) fcab109
- 67 Jaarsma D, Ruigrok TJ, Caffé R. et al. Cholinergic innervation and receptors in the cerebellum. Prog Brain Res 1997; 114: 67-96
- 68 Benarroch EE. Effects of acetylcholine in the striatum. Recent insights and therapeutic implications. Neurology 2012; 79 (03) 274-281
- 69 Fore TR, Taylor BN, Brunel N, Hull C. Acetylcholine Modulates Cerebellar Granule Cell Spiking by Regulating the Balance of Synaptic Excitation and Inhibition. J Neurosci 2020; 40 (14) 2882-2894
- 70 Fan H, Zheng Z, Yin Z, Zhang J, Lu G. Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Front Hum Neurosci 2021; 15: 757579
