RSS-Feed abonnieren

DOI: 10.1055/s-0045-1814093
Chemical Composition, Pharmacological Effects, and Clinical Applications of Danggui (Angelicae Sinensis Radix)
Autor*innen
Funding Key Scientific Research Projects of Henan Higher Education Institutions (21A320018).
Abstract
As a traditional medicinal and edible herb, Danggui (Angelicae Sinensis Radix) exhibits pharmacological activities closely associated with its characteristic chemical components, such as volatile oils (e.g., ligustilide), organic acids (e.g., ferulic acid), and polysaccharides. It demonstrates a wide range of pharmacological effects, including anti-inflammatory and immunomodulatory properties, cardiovascular and cerebrovascular protection, neuroprotective functions, blood glucose regulation, antitumor activity, and hematopoietic promotion. Clinically, Danggui (Angelicae Sinensis Radix) is often combined with other Chinese herbs to treat immune-related disorders, cardiovascular and cerebrovascular diseases, neurodegenerative conditions, diabetes, and cancer. Although existing studies have identified some active components, the mechanisms and pharmacological roles of many others remain underexplored. Future research should focus on systematically analyzing diverse active constituents such as flavonoids, coumarins, amino acids, bioactive peptides, trace elements, and vitamins. Integrating multiomics and molecular docking technologies will help elucidate key targets and molecular mechanisms underlying its anti-inflammatory, antioxidant, and immunomodulatory effects, thereby facilitating the development of precise therapies based on multicomponent synergy. Additionally, in-depth investigation of herb-pairing effects and establishment of scientific quality control standards are essential to expand clinical applications and enhance the medicinal value of this traditional herb.
Keywords
Danggui - Angelicae Sinensis Radix - chemical composition - pharmacological effects - clinical applicationsSecondary Publication Statement
The original version of this Chemical Composition, Pharmacological Effects, and Clinical Applications of Danggui (Angelicae Sinensis Radix) appeared in Chinese from School of Pharmacy, Henan University of Medicine, Xinxiang, Henan,China, published Acta Chinese Medicine, Vol.40 No.9,2025.
Publikationsverlauf
Eingereicht: 10. Juli 2025
Angenommen: 20. August 2025
Artikel online veröffentlicht:
30. Dezember 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Kim JH, Doh EJ, Lee G. Chemotaxonomic classification of Peucedanum japonicum and its chemical correlation with Peucedanum praeruptorum, Angelica decursiva, and Saposhnikovia divaricata by liquid chromatography combined with chemometrics. Molecules 2022; 27 (05) 1675
- 2 Zhou ML, Han NP. Research progress on active components and pharmacological action of Angelica sinensis . Global Tradit Chin Med 2024; 17 (07) 1420-1427
- 3 Li Q, Chen Y, Gao H, Li Z, Qiu D, Hu G. In situ analysis of volatile oil in Angelica sinensis roots by fluorescence imaging combined with mass spectrometry imaging. Talanta 2023; 255: 124253
- 4 Lu XH, Zhang JJ, Liang H. et al. Chemical constituents of Angelica sinensis . J Chin Pharm Sci 2004; 13 (01) 1-8
- 5 Su DM, Yu SS, Qin HL. New dimeric phthalide derivative from Angelica sinensis . Yao Xue Xue Bao 2005; 40 (02) 141-144
- 6 Lu XH, Zhang JJ, Zhang XX. et al. Isolation and structural identification of ligustilide dimers from Angelica sinensis . Chin J Chin Mate Med 2008; 33 (19) 2196-2201
- 7 Zhao XJ, Wang HF, Zhao DQ. et al. Isolation and identification of chemical constituents from Angelica sinensis . J Shenyang Pharm Univ 2013; 30 (03) 182-185
- 8 Lei C, Cao YD, Yan H. et al. A comparative study of ferulic acid content in taproot and rootlet of Radix Angelicae Sinensis from different regions. Chin Med Herald 2020; 17 (27) 120-122
- 9 Nai J, Zhang C, Shao H. et al. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int J Biol Macromol 2021; 183: 2337-2353
- 10 Cao YD. Analysis of chemical constituents and pharmacological effects of Angelica sinensis . World Latest Med Inf 2019; 19 (02) 93-95
- 11 Han X, Ando H, Kudo Y, Sasaki Y. Development of highly sensitive method for sugar determination in herbal medicine: Application of monosaccharides and oligosaccharides in Japanese Angelica root and Rehmannia root. Chem Pharm Bull (Tokyo) 2022; 70 (11) 796-804
- 12 Wang H, Sun N. Analysis of research progress on active chemical constituents and pharmacological effects of Angelica sinensis . Shandong Chem Industry 2017; 46 (18) 59-60
- 13 Dong H, Li M, Jin L, Xie X, Li M, Wei J. Cool temperature enhances growth, ferulic acid and flavonoid biosynthesis while inhibiting polysaccharide biosynthesis in Angelica sinensis . Molecules 2022; 27 (01) 320
- 14 Liu L, Zhang B, Zhou Z. et al. Integrated network pharmacology and experimental validation approach to investigate the mechanisms of Radix Rehmanniae Praeparata-Angelica Sinensis-Radix Achyranthis Bidentatae in treating knee osteoarthritis. Drug Des Devel Ther 2024; 18: 1583-1602
- 15 Xu C, Ni S, Zhuang C. et al. Polysaccharide from Angelica sinensis attenuates SNP-induced apoptosis in osteoarthritis chondrocytes by inducing autophagy via the ERK1/2 pathway. Arthritis Res Ther 2021; 23 (01) 47
- 16 Tian M, Li K, Liu R, Du J, Zou D, Ma Y. Angelica polysaccharide attenuates LPS-induced inflammation response of primary dairy cow claw dermal cells via NF-κB and MAPK signaling pathways. BMC Vet Res 2021; 17 (01) 248
- 17 Li MM, Zhang Y, Wu J, Wang KP. Polysaccharide from Angelica sinensis suppresses inflammation and reverses anemia in complete Freund's adjuvant-induced rats. Curr Med Sci 2020; 40 (02) 265-274
- 18 Choi TJ, Song J, Park HJ, Kang SS, Lee SK. Anti-inflammatory activity of glabralactone, a coumarin compound from Angelica sinensis, via suppression of TRIF-dependent IRF-3 signaling and NF-κB pathways. Mediators Inflamm 2022; 2022: 5985255
- 19 Ge Y, Palanisamy S, Kwon MH. et al. Angelica gigas polysaccharide induces CR3-mediated macrophage activation and the cytotoxicity of natural killer cells against HCT-116 cells via NF-κB and MAPK signaling pathways. Int J Biol Macromol 2024; 263 (Pt 2): 130320
- 20 Li C, Cai Q, Wu X. et al. Anti-inflammatory study on the constituents of Angelica sinensis (oliv.) Diels, Angelica dahurica (hoffm.) Benth. & Hook.f.ex franch.& sav., Angelica pubescence Maxim and Foeniculum vulgare Mill. essential oils. J Oleo Sci 2022; 71 (08) 1207-1219
- 21 Xu X, Tao N, Sun C. et al. Ligustilide prevents thymic immune senescence by regulating Thymosin β15-dependent spatial distribution of thymic epithelial cells. Phytomedicine 2024; 123: 155216
- 22 Chen L, Fan B, Wang F. et al. Research progress in pharmacological effects and mechanisms of Angelica sinensis against cardiovascular and cerebrovascular diseases. Molecules 2024; 29 (09) 2100
- 23 Li X, Zhou J, Dou Y. et al. The protective effects of angelica organic acid against ox-LDL-induced autophagy dysfunction of HUVECs. BMC Complement Med Ther 2020; 20 (01) 164
- 24 Li WJ, Cai YF, Ouyang Y. et al. Quality evaluation of Angelica Sinensis Radix dispensing granules by integrating microvascular activity and chemical analysis. J Ethnopharmacol 2024; 319 (Pt 2): 117236
- 25 Niu X, Zhang J, Ni J. et al. Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. Biosci Rep 2018; 38 (06) BSR20180519
- 26 Ren C, Wang L, Li X. et al. Elucidating the mechanism of action of Radix Angelica sinensis (Oliv.) Diels and Radix Astragalus mongholicus Bunge ultrafiltration extract on radiation-induced myocardial fibrosis based on network pharmacology and experimental research. Eur J Pharm Sci 2024; 199: 106794
- 27 Liang P, Bi T, Zhou Y. et al. Insights into the mechanism of supramolecular self-assembly in the Astragalus membranaceus-Angelica sinensis codecoction. ACS Appl Mater Interfaces 2023; 15 (41) 47939-47954
- 28 Szliszka E, Czuba ZP, Domino M, Mazur B, Zydowicz G, Krol W. Ethanolic extract of propolis (EEP) enhances the apoptosis-inducing potential of TRAIL in cancer cells. Molecules 2009; 14 (02) 738-754
- 29 Zeng QT, Lan MH, Li GY. et al. Study on the anti-Alzheimer's disease network pharmacological action mechanism of active ingredients of Angelica sinensis. Clin J Tradit Chin Med 2024; 36 (02) 268-274
- 30 Li XY, Li SF. Research progress on chemical constituents, pharmacological effects and clinical applications of Angelicae Sinensis Radix and Chuanxiong Rhizoma herb pairs. Chin Tradit Herb 2024; 55 (04) 1415-1426
- 31 Wang HP, Wu HY, Ma CL. et al. Optimal formula of Angelica sinensis ameliorates memory deficits in beta-amyloid protein-induced Alzheimer's disease rat model. Curr Med Sci 2022; 42 (01) 39-47
- 32 Patyra A, Vaillé J, Omhmmed S. et al. Pharmacological and phytochemical insights on the pancreatic β-cell modulation by Angelica L. roots. J Ethnopharmacol 2024; 329: 118133
- 33 Ali MY, Zamponi GW, Seong SH, Jung HA, Choi JS. 6-formyl umbelliferone, a furanocoumarin from Angelica decursiva L., inhibits key diabetes-related enzymes and advanced glycation end-product formation. Molecules 2022; 27 (17) 5720
- 34 Dong Y, Zhao Q, Wang Y. Network pharmacology-based investigation of potential targets of astragalus membranaceous-Angelica sinensis compound acting on diabetic nephropathy. Sci Rep 2021; 11 (01) 19496
- 35 Shen J, Qin H, Li K. et al. The Angelica polysaccharide: A review of phytochemistry, pharmacology and beneficial effects on systemic diseases. Int Immunopharmacol 2024; 133: 112025
- 36 Jia X, Yuan Z, Yang Y. et al. Multi-functional self-assembly nanoparticles originating from small molecule natural product for oral insulin delivery through modulating tight junctions. J Nanobiotechnology 2022; 20 (01) 116-121
- 37 Wang MZ, He X, Yu Z, Wu H, Yang TH. A nano herb delivery system based on Angelica sinensis polysaccharide for combination of chemotherapy and immunotherapy. Molecules 2020; 25 (13) 3096
- 38 Sun H, Nai J, Deng B. et al. Angelica sinensis polysaccharide-based nanoparticles for liver-targeted delivery of oridonin. Molecules 2024; 29 (03) 731
- 39 Cai Y, Wang Y, Su W, Zhou X, Lu C. Angelica sinensis polysaccharide suppresses the Wnt/β-catenin-mediated malignant biological behaviors of breast cancer cells via the miR-3187-3p/PCDH10 axis. Biochem Pharmacol 2024; 225: 116295
- 40 Guo W, Wang W, Lei F. et al. Angelica sinensis polysaccharide combined with cisplatin reverses cisplatin resistance of ovarian cancer by inducing ferroptosis via regulating GPX4. Biomed Pharmacother 2024; 175: 116680
- 41 Kweon B, Han YH, Kee JY. et al. Effect of Angelica gigas nakai ethanol extract and decursin on human pancreatic cancer cells. Molecules 2020; 25 (09) 2028
- 42 Tang SN, Jiang P, Kim S, Zhang J, Jiang C, Lü J. Interception targets of Angelica gigas nakai root extract versus pyranocoumarins in prostate early lesions and neuroendocrine carcinomas in TRAMP mice. Cancer Prev Res (Phila) 2021; 14 (06) 635-648
- 43 Wu Y, Rong L, Zhang S. et al. Ligustilide inhibits the PI3K/AKT signalling pathway and suppresses cholangiocarcinoma cell proliferation, migration, and invasion. Recent Pat Anticancer Drug Discov 2025; 20 (02) 200-212
- 44 Kong BY, Wei LB, Guo QL. Progress in antitumor activity of baicalin. Acta Pharmacol Sin 2021; 56 (06) 1537-1543
- 45 Wei HL, Liu CX, Chen SC, Yang M. Angelica polysaccharide resists platelets apoptosis induced by LY294002. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2019; 27 (04) 1208-1214
- 46 Niu Y, Xiao H, Wang B. et al. Angelica sinensis polysaccharides alleviate the oxidative burden on hematopoietic cells by restoring 5-fluorouracil-induced oxidative damage in perivascular mesenchymal progenitor cells. Pharm Biol 2023; 61 (01) 768-778
- 47 Zhang Y, Guo T, Huang L. et al. Protective effect of Angelica sinensis polysaccharide on pregnant rats suffering from iron deficiency anemia via regulation of the hepcidin-FPN1 axis. Int J Biol Macromol 2024; 256 (Pt 2): 128016
- 48 Bi SJ, Fu RJ, Li JJ. et al. The bioactivities and potential clinical values of Angelica sinensis polysaccharides. Nat Prod Commun 2021; 16 (03) 1-18
- 49 Zhang Y, He ZH, Liu XC. et al. Oral administration of Angelica sinensis polysaccharide protects against pancreatic islets failure in type 2 diabetic mice: Pancreatic β-cell apoptosis inhibition. J Funct Foods 2019; 54: 361-370
- 50 Hua Y, Xue W, Zhang M, Wei Y, Ji P. Metabonomics study on the hepatoprotective effect of polysaccharides from different preparations of Angelica sinensis . J Ethnopharmacol 2014; 151 (03) 1090-1099
- 51 Gao Z, Zhang C, Tian W. et al. The antioxidative and hepatoprotective effects comparison of Chinese Angelica polysaccharide (CAP)and selenizing CAP (sCAP) in CCl4 induced hepatic injury mice. Int J Biol Macromol 2017; 97: 46-54
- 52 Wen XD, Zhang YL, Yang L. et al. Angelica sinensis polysaccharide and Astragalus membranaceus polysaccharide accelerate liver regeneration by enhanced glycolysis via activation of JAK2/STAT3/HK2 pathway. Molecules 2022; 27 (22) 7890
- 53 Xu Y, Wang XC, Jiang W, Hu JN. Angelica sinensis polysaccharides modified selenium nanoparticles for effective prevention of acute liver injury. Int J Biol Macromol 2024; 263 (Pt 1): 130321
- 54 Gao WW, Qiao XL, Zhu JX. et al. Clinical efficacy of tacrolimus ointment + 3% boric acid lotion joint Chinese Angelica decoction in chronic perianal eczema. Comput Math Methods Med 2021; 2021: 1-5
- 55 Xia C, Fu X, Wang Q. et al. Anti-ROS and NIR-II-responsive hyaluronic acid microneedle loaded with baicalin nanoparticles for treatment of psoriasis. Macromol Rapid Commun 2024; 45 (15) e2400136
- 56 Li H, Ma Y, Liu Y. et al. Integrated biomarker parameters response to the toxic effects of high stocking density, CuSO4, and trichlorfon on fish and protective role mediated by Angelica sinensis extract. Fish Physiol Biochem 2020; 46 (05) 1679-1698
- 57 He D, Song Y, Xiao H. et al. Ligustilide enhances pregnancy outcomes via improvement of endometrial receptivity and promotion of endometrial angiogenesis in rats. J Nat Med 2024; 78 (01) 42-52
- 58 Li T, Wang P, Guo W. et al. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application. ACS Nano 2019; 13 (06) 6770-6781
- 59 Gao Q, Qi J, Tan Y, Ju J. Antifungal mechanism of Angelica sinensis essential oil against Penicillium roqueforti and its application in extending the shelf life of bread. Int J Food Microbiol 2024; 408: 110427
