RSS-Feed abonnieren

DOI: 10.1055/s-0045-1802321
Unlocking Mysteries: Exploring the Dynamic Interplay among Sleep, the Immune System, and Curcumin in Contemporary Research
Funding Source The authors declare that they did not receive funding from agencies in the public, private, or non-profit sectors to conduct the present study.
Abstract
The scientific disciplines encompassing sleep, the immune system, and curcumin have garnered considerable interest due to their interconnectedness and potential implications for human health. Sleep is a crucial factor in maintaining optimal immune function, as it facilitates the release of cytokines, which are signaling molecules responsible for regulating immune responses. On the contrary, sleep deprivation has the potential of inhibiting immune function, thereby heightening the susceptibility to infection and disease. Curcumin, a naturally occurring polyphenol derived from the turmeric plant, has been observed to possess immunomodulatory characteristics through its ability to modulate the equilibrium between pro- and anti-inflammatory cytokines. It is worth noting that there is evidence suggesting that curcumin supplementation could enhance the quality of sleep. Scientific studies have indicated that curcumin supplementation has been associated with an increase in the duration of sleep and a decrease in wakefulness among individuals who are in good health. Additionally, curcumin supplementation has been found to enhance sleep quality and alleviate symptoms of depression in individuals diagnosed with major depressive disorder. The intricate interplay among sleep, the immune system, and curcumin is multifaceted, and scientific investigations indicate that curcumin may serve as a beneficial dietary adjunct to enhance immune function and optimize sleep quality. Nevertheless, additional investigation is required to fully comprehend the mechanisms through which curcumin alters the immune system and enhances sleep, as well as to ascertain the most effective dose and timing of curcumin supplementation.
Authors' Contributions
RK, AP, RPP: Writing-review and editing, supervision, conceptualization. AV, MA: writing-review and editing. All authors have read and agreed regarding the version of the manuscript submitted for publication.
# The authors have contributed equally.
Publikationsverlauf
Eingereicht: 10. Mai 2024
Angenommen: 28. Oktober 2024
Artikel online veröffentlicht:
27. März 2025
© 2025. Brazilian Sleep Academy. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res 2016; 25 (02) 131-143
- 2 Colrain IM. Sleep and the brain. Neuropsychol Rev 2011; 21 (01) 1-4
- 3 Hobson JA. Sleep is of the brain, by the brain and for the brain. Nature 2005; 437 (7063): 1254-1256
- 4 Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 1953; 118 (3062): 273-274
- 5 Stickgold R, Walker MP. Sleep-dependent memory consolidation and reconsolidation. Sleep Med 2007; 8 (04) 331-343
- 6 Daan S, Beersma DG, Borbély AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 1984; 246 (2 Pt 2): R161-R183
- 7 Stickgold R, Hobson JA, Fosse R, Fosse M. Sleep, learning, and dreams: off-line memory reprocessing. Science 2001; 294 (5544): 1052-1057
- 8 Peever J, Fuller PM. The Biology of REM Sleep. Curr Biol 2017; 27 (22) R1237-R1248
- 9 Borbély A. The two-process model of sleep regulation: Beginnings and outlook. J Sleep Res 2022; 31 (04) e13598
- 10 Borbély AA. A two process model of sleep regulation. Hum Neurobiol 1982; 1 (03) 195-204
- 11 Siegel JM. Do all animals sleep?. Trends Neurosci 2008; 31 (04) 208-213
- 12 Borbély AA, Neuhaus HU. Sleep-deprivation: Effects on sleep and EEG in the rat. J Comp Physiol 1979; 133 (01) 71-87
- 13 Mang GM, Franken P. Sleep and EEG Phenotyping in Mice. Curr Protoc Mouse Biol 2012; 2 (01) 55-74
- 14 Hobson JA, Pace-Schott EF, Stickgold R. Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behav Brain Sci 2000; 23 (06) 793-842 , discussion 904–1121
- 15 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012; 92 (03) 1087-1187
- 16 Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437 (7063): 1257-1263
- 17 Siegel JM. Clues to the functions of mammalian sleep. Nature 2005; 437 (7063): 1264-1271
- 18 Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 2001; 24 (12) 726-731
- 19 Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT. The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019; 24 (09) 1284-1295
- 20 Siegel JM. The neurotransmitters of sleep. J Clin Psychiatry 2004; 65 (Suppl 16, Suppl 16) 4-7
- 21 Van Erum J, Van Dam D, De Deyn PP. Alzheimer's disease: Neurotransmitters of the sleep-wake cycle. Neurosci Biobehav Rev 2019; 105: 72-80
- 22 Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol 2005; 99 (05) 2008-2019
- 23 Vaccaro A, Kaplan Dor Y, Nambara K. et al. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020; 181 (06) 1307-1328.e15
- 24 Benedetti F, Colombo C. Sleep deprivation in mood disorders. Neuropsychobiology 2011; 64 (03) 141-151
- 25 Bishir M, Bhat A, Essa MM. et al. Sleep Deprivation and Neurological Disorders. BioMed Res Int 2020; 2020: 5764017
- 26 Kalsi J, Tervo T, Bachour A, Partinen M. Sleep versus non-sleep-related fatal road accidents. Sleep Med 2018; 51: 148-152
- 27 Walker MP, van der Helm E. Overnight therapy? The role of sleep in emotional brain processing. Psychol Bull 2009; 135 (05) 731-748
- 28 Verkhratsky A, Nedergaard M, Steardo L, Li B. Editorial: Sleep and Mood Disorders. Front Psychiatry 2020; 10: 981 https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00981 cited 2023Jul5 [Internet]
- 29 Zhang N, Liu HT. Effects of sleep deprivation on cognitive functions. Neurosci Bull 2008; 24 (01) 45-48
- 30 Cabeza de Baca T, Chayama KL, Redline S. et al. Sleep debt: the impact of weekday sleep deprivation on cardiovascular health in older women. Sleep 2019; 42 (10) zsz149
- 31 Cooper CB, Neufeld EV, Dolezal BA, Martin JL. Sleep deprivation and obesity in adults: a brief narrative review. BMJ Open Sport Exerc Med 2018; 4 (01) e000392
- 32 Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev 2007; 11 (03) 163-178
- 33 Samy AL, Hairi NN, Low WY. Psychosocial stress, sleep deprivation, and its impact on type II diabetes mellitus: Policies, guidelines, and initiatives from Malaysia. FASEB Bioadv 2021; 3 (08) 593-600
- 34 Alonzo R, Hussain J, Stranges S, Anderson KK. Interplay between social media use, sleep quality, and mental health in youth: A systematic review. Sleep Med Rev 2021; 56: 101414
- 35 Freeman D, Sheaves B, Waite F, Harvey AG, Harrison PJ. Sleep disturbance and psychiatric disorders. Lancet Psychiatry 2020; 7 (07) 628-637
- 36 Scammell TE. Narcolepsy. N Engl J Med 2015; 373 (27) 2654-2662
- 37 Wang J, Li X, Yang S. et al. Pitolisant versus placebo for excessive daytime sleepiness in narcolepsy and obstructive sleep apnea: A meta-analysis from randomized controlled trials. Pharmacol Res 2021; 167: 105522
- 38 Zeman A, Britton T, Douglas N. et al. Narcolepsy and excessive daytime sleepiness. BMJ 2004; 329 (7468): 724-728
- 39 Castanon-Cervantes O, Wu M, Ehlen JC. et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol 2010; 185 (10) 5796-5805
- 40 Irwin MR. Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol 2015; 66: 143-172
- 41 Xu H, Huang L, Zhao J, Chen S, Liu J, Li G. The circadian clock and inflammation: A new insight. Clin Chim Acta 2021; 512: 12-17
- 42 Vgontzas AN, Zoumakis E, Bixler EO. et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 2004; 89 (05) 2119-2126
- 43 Ganeshan K, Chawla A. Metabolic regulation of immune responses. Annu Rev Immunol 2014; 32: 609-634
- 44 Nicholson LB. The immune system. Essays Biochem 2016; 60 (03) 275-301
- 45 Fernández-Ruiz I. Immune system and cardiovascular disease. Nat Rev Cardiol 2016; 13 (09) 503
- 46 Tecklenborg J, Clayton D, Siebert S, Coley SM. The role of the immune system in kidney disease. Clin Exp Immunol 2018; 192 (02) 142-150
- 47 Villoslada P, Moreno B, Melero I. et al. Immunotherapy for neurological diseases. Clin Immunol 2008; 128 (03) 294-305
- 48 Abbott M, Ustoyev Y. Cancer and the Immune System: The History and Background of Immunotherapy. Semin Oncol Nurs 2019; 35 (05) 150923
- 49 Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature 2011; 474 (7351): 327-336
- 50 Loose D, Van de Wiele C. The immune system and cancer. Cancer Biother Radiopharm 2009; 24 (03) 369-376
- 51 Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res 2017; 4 (01) 14
- 52 Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22 (19) 10800
- 53 Nguyen TTT, Wang ZE, Shen L, Schroeder A, Eckalbar W, Weiss A. Cbl-b deficiency prevents functional but not phenotypic T cell anergy. J Exp Med 2021; 218 (07) e20202477
- 54 Liu Y, Wang J, Wu C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Front Nutr 2022; 8: 634897 https://www.frontiersin.org/articles/10.3389/fnut.2021.634897 cited 2023Jul3 [Internet]
- 55 Lestari MLAD, Indrayanto G. Chapter Three - Curcumin. In: Brittain HG. editor. Profiles of Drug Substances, Excipients and Related Methodology [Internet]. Academic Press; 2014. [cited 2023 Jul 5]. p. 113–204. Available from: https://www.sciencedirect.com/science/article/pii/B9780128001738000039
- 56 Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer 2005; 41 (13) 1955-1968
- 57 Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets 2011; 12 (03) 332-347
- 58 Abadi AJ, Mirzaei S, Mahabady MK. et al. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 2022; 36 (01) 189-213
- 59 Mortezaee K, Salehi E, Mirtavoos-Mahyari H. et al. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J Cell Physiol 2019; 234 (08) 12537-12550
- 60 Shehzad A, Rehman G, Lee YS. Curcumin in inflammatory diseases. Biofactors 2013; 39 (01) 69-77
- 61 Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytokine 2023; 164: 156144
- 62 Jakubczyk K, Drużga A, Katarzyna J, Skonieczna-Żydecka K. Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials. Antioxidants 2020; 9 (11) 1092
- 63 Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem 2006; 98 (04) 720-724
- 64 Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol 2007; 595: 1-75
- 65 Mukherjee S, Mishra AK, Peer GDG. et al. The Interplay of the Unfolded Protein Response in Neurodegenerative Diseases: A Therapeutic Role of Curcumin. Front Aging Neurosci 2021; 13: 767493
- 66 Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39 (01) 44-84
- 67 Radi E, Formichi P, Battisti C, Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 2014; 42 (Suppl. 03) S125-S152
- 68 Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997; 82 (02) 291-295
- 69 Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch 2012; 463 (01) 121-137
- 70 Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev 2019; 99 (03) 1325-1380
- 71 Davis CJ, Krueger JM. Sleep and Cytokines. Sleep Med Clin 2012; 7 (03) 517-527
- 72 Krueger JM, Rector DM, Churchill L. Sleep and Cytokines. Sleep Med Clin 2007; 2 (02) 161-169
- 73 Benca RM, Kushida CA, Everson CA, Kalski R, Bergmann BM, Rechtschaffen A. Sleep deprivation in the rat: VII. Immune function. Sleep 1989; 12 (01) 47-52
- 74 Garbarino S, Lanteri P, Bragazzi NL, Magnavita N, Scoditti E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun Biol 2021; 4 (01) 1304
- 75 Moldofsky H, Lue FA, Davidson JR, Gorczynski R. Effects of sleep deprivation on human immune functions. FASEB J 1989; 3 (08) 1972-1977
- 76 Ragnoli B, Pochetti P, Pignatti P. et al. Sleep Deprivation, Immune Suppression and SARS-CoV-2 Infection. Int J Environ Res Public Health 2022; 19 (02) 904
- 77 Opp MR, Baracchi F. Sleep and immune function. In: Current Advances in Sleep Biology. 2009
- 78 Cohen S, Doyle WJ, Alper CM, Janicki-Deverts D, Turner RB. Sleep habits and susceptibility to the common cold. Arch Intern Med 2009; 169 (01) 62-67
- 79 Miletínová E, Bušková J. Functions of Sleep. Physiol Res 2021; 70 (02) 177-182
- 80 Swinbourne R, Miller J, Smart D, Dulson DK, Gill N. The Effects of Sleep Extension on Sleep, Performance, Immunity and Physical Stress in Rugby Players. Sports (Basel) 2018; 6 (02) 42
- 81 Krueger JM, Frank MG, Wisor JP, Roy S. Sleep function: Toward elucidating an enigma. Sleep Med Rev 2016; 28: 46-54
- 82 Pandey AK, Kar SK. REM sleep deprivation of rats induces acute phase response in liver. Biochem Biophys Res Commun 2011; 410 (02) 242-246
- 83 Irwin MR, Opp MR. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacology 2017; 42 (01) 129-155
- 84 Liu X, Su Y, Huang Z. et al. Sleep loss potentiates Th17-cell pathogenicity and promotes autoimmune uveitis. Clin Transl Med 2023; 13 (05) e1250
- 85 Silber MH. Chapter 18 - Autoimmune sleep disorders. In: Pittock SJ, Vincent A. editors. Handbook of Clinical Neurology [Internet]. Elsevier; 2016. [cited 2023 Jul 6]. p. 317–26. (Autoimmune Neurology; vol. 133). Available from: https://www.sciencedirect.com/science/article/pii/B9780444634320000189
- 86 Dimitrov S, Lange T, Benedict C. et al. Sleep enhances IL-6 trans-signaling in humans. FASEB J 2006; 20 (12) 2174-2176
- 87 Guilleminault C, Kirisoglu C, Ohayon MM. C-reactive protein and sleep-disordered breathing. Sleep 2004; 27 (08) 1507-1511
- 88 Meier-Ewert HK, Ridker PM, Rifai N. et al. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol 2004; 43 (04) 678-683
- 89 Krueger JM. The role of cytokines in sleep regulation. Curr Pharm Des 2008; 14 (32) 3408-3416
- 90 Krueger JM, Obál Jr FJ, Fang J, Kubota T, Taishi P. The role of cytokines in physiological sleep regulation. Ann N Y Acad Sci 2001; 933 (01) 211-221
- 91 Iranzo A. Sleep and neurological autoimmune diseases. Neuropsychopharmacology 2020; 45 (01) 129-140
- 92 Liew SC, Aung T. Sleep deprivation and its association with diseases- a review. Sleep Medicine [Internet]. 2020; Available from: https://www.sciencedirect.com/science/article/pii/S1389945720303701
- 93 Devine MF, St Louis EK. Sleep Disturbances Associated with Neurological Autoimmunity. Neurotherapeutics 2021; 18 (01) 181-201
- 94 Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10: 1827 https://www.frontiersin.org/articles/10.3389/fimmu.2019.01827 cited 2023Oct30 [Internet]
- 95 Irish LA, Kline CE, Gunn HE, Buysse DJ, Hall MH. The role of sleep hygiene in promoting public health: A review of empirical evidence. Sleep Med Rev 2015; 22: 23-36
- 96 Abdel-Lateef E, Mahmoud F, Hammam O. et al. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharm 2016; 66 (03) 387-398
- 97 Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 2014; 46 (01) 2-18
- 98 Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 2007; 595: 105-25 https://doi.org/10.1007/978-0-387-46401-5_3
- 99 Guo J, Cao X, Hu X, Li S, Wang J. The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol 2020; 21: 62 https://doi.org/10.1186/s40360-020-00440-3
- 100 Nicoliche T, Bartolomeo CS, Lemes RMR, Pereira GC, Nunes TA, Oliveira RB. et al Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci Rep 2024; 14: 10696 https://doi.org/10.1038/s41598-024-61662-7
- 101 Sathyabhama M, Priya Dharshini LC, Karthikeyan A, Kalaiselvi S, Min T. The Credible Role of Curcumin in Oxidative Stress-Mediated Mitochondrial Dysfunction in Mammals. Biomolecules 2022; 12: 1405 https://doi.org/10.3390/biom12101405
- 102 Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41 (01) 40-59
- 103 Farombi EO, Ekor M. Curcumin attenuates gentamicin-induced renal oxidative damage in rats. Food Chem Toxicol 2006; 44 (09) 1443-1448
- 104 Park MJ, Moon SJ, Lee SH. et al. Curcumin attenuates acute graft-versus-host disease severity via in vivo regulations on Th1, Th17 and regulatory T cells. PLoS One 2013; 8 (06) e67171
- 105 Saberi-Karimian M, Ghazizadeh H, Mohammadzadeh E, Ferns GA, Ghayour-Mobarhan M, Sahebkar A. Does curcumin have an effect on sleep duration in metabolic syndrome patients?. Avicenna J Phytomed 2021; 11 (02) 190-198
- 106 Tu CT, Yao QY, Xu BL, Wang JY, Zhou CH, Zhang SC. Protective effects of curcumin against hepatic fibrosis induced by carbon tetrachloride: modulation of high-mobility group box 1, Toll-like receptor 4 and 2 expression. Food Chem Toxicol 2012; 50 (09) 3343-3351
- 107 Yang J, Zhu D, Ju B, Jiang X, Hu J. Hepatoprotective effects of Gentianella turkestanerum extracts on acute liver injury induced by carbon tetrachloride in mice. Am J Transl Res 2017; 9 (02) 569-579
- 108 Hernández Santiago K, López-López AL, Sánchez-Muñoz F, Cortés Altamirano JL, Alfaro-Rodríguez A, Bonilla-Jaime H. Sleep deprivation induces oxidative stress in the liver and pancreas in young and aging rats. Heliyon 2021; 7 (03) e06466
- 109 Villafuerte G, Miguel-Puga A, Rodríguez EM, Machado S, Manjarrez E, Arias-Carrión O. Sleep deprivation and oxidative stress in animal models: a systematic review. Oxid Med Cell Longev 2015; 2015: 234952-234952
- 110 Li W, Wang Z, Cao J, Dong Y, Chen Y. Role of Sleep Restriction in Daily Rhythms of Expression of Hypothalamic Core Clock Genes in Mice. Curr Issues Mol Biol 2022; 44 (02) 609-625
- 111 Abelaira HM, Réus GZ, Quevedo J. Animal models as tools to study the pathophysiology of depression. Br J Psychiatry 2013; 35 (Suppl. 02) S112-S120
- 112 Atul P. Kumar D., Ray G., Kar S. K. The flower pot method of REM sleep deprivation causes apoptotic cell death in the hepatocytes of rat. bioRxiv 2019 Jan 1;375717.
- 113 Csipo T, Lipecz A, Owens C. et al. Sleep deprivation impairs cognitive performance, alters task-associated cerebral blood flow and decreases cortical neurovascular coupling-related hemodynamic responses. Sci Rep 2021; 11 (01) 20994
- 114 Pandey A, Oliver R, Kar SK. Differential Gene Expression in Brain and Liver Tissue of Wistar Rats after Rapid Eye Movement Sleep Deprivation. Clocks Sleep 2020; 2 (04) 442-465
- 115 Küpeli Akkol E, Bardakcı H, Yücel Ç, Şeker Karatoprak G, Karpuz B, Khan H. A New Perspective on the Treatment of Alzheimer's Disease and Sleep Deprivation-Related Consequences: Can Curcumin Help?. Oxid Med Cell Longev 2022; 2022: 6168199
- 116 Benameur T, Giacomucci G, Panaro MA. et al. New Promising Therapeutic Avenues of Curcumin in Brain Diseases. Molecules 2021; 27 (01) 236
- 117 Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm 2007; 4 (06) 807-818
- 118 Kar SK, Akhtar F, Ray G, Pandey AK. Curcumin nanoparticles and methods of producing the same [Internet]. WO2010013224A2, 2010 [cited 2023 Oct 19]. Available from: https://patents.google.com/patent/WO2010013224A2/en
- 119 Sabet S, Rashidinejad A, Melton LD, McGillivray DJ. Recent advances to improve curcumin oral bioavailability. Trends Food Sci Technol 2021; 110: 253-266
- 120 Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020; 46 (01) 5-20
- 121 Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ. Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs 2012; 21 (08) 1123-1140
- 122 Tubbs AS, Kennedy KER, Alfonso-Miller P, Wills CCA, Grandner MAA. A Randomized, Double-Blind, Placebo-Controlled Trial of a Polyphenol Botanical Blend on Sleep and Daytime Functioning. Int J Environ Res Public Health 2021; 18 (06) 3044
- 123 Um MY, Yoon M, Kim M. et al. Curcuminoids, a major turmeric component, have a sleep-enhancing effect by targeting the histamine H1 receptor. Food Funct 2022; 13 (24) 12697-12706
- 124 Naghdi A, Goodarzi MT, Karimi J, Hashemnia M, Khodadadi I. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. J Cardiovasc Thorac Res 2022; 14 (02) 128-137
- 125 Hassanizadeh S, Shojaei M, Bagherniya M, Orekhov AN, Sahebkar A. Effect of nano-curcumin on various diseases: A comprehensive review of clinical trials. Biofactors 2023; 49 (03) 512-533
- 126 Erfanizadeh M, Noorafshan A, Namavar MR, Karbalay-Doust S, Talaei-Khozani T. Curcumin mitigates the sleep-deprivation impacts on rat hypothalamic paraventricular nucleus. IBRO Neurosci Rep 2023; Nov 29; 15: 395-404 . PMID: 38089741; PMCID: PMC10714340
- 127 Seyedabadi S, Hoseini ZS, Ferns GA, Bahrami A. Effects of curcumin supplementation on insomnia and daytime sleepiness in young women with premenstrual syndrome and dysmenorrhea: A randomized clinical trial. Avicenna J Phytomed 2023; Nov-Dec; 13 (06) 585-596 . PMID: 38106634; PMCID: PMC10719725
- 128 Shakeri F, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of curcumin in ovalbumin-sensitized rat. Biofactors 2017; 43 (04) 567-576
- 129 Zhang M, Deng CS, Zheng JJ, Xia J. Curcumin regulated shift from Th1 to Th2 in trinitrobenzene sulphonic acid-induced chronic colitis. Acta Pharmacol Sin 2006; 27 (08) 1071-1077
- 130 Gao S, Zhang W, Zhao Q. et al. Curcumin ameliorates atherosclerosis in apolipoprotein E deficient asthmatic mice by regulating the balance of Th2/Treg cells. Phytomedicine 2019; 52: 129-135
- 131 Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients 2018; 10 (10) 1553
- 132 Guo C, Huang Q, Wang Y. et al. Therapeutic application of natural products: NAD+ metabolism as potential target. Phytomedicine 2023; 114: 154768
- 133 Chen L, Zhan CZ, Wang T, You H, Yao R. Curcumin Inhibits the Proliferation, Migration, Invasion, and Apoptosis of Diffuse Large B-Cell Lymphoma Cell Line by Regulating MiR-21/VHL Axis. Yonsei Med J 2020; 61 (01) 20-29
- 134 Batool A, Hazafa A, Ahmad S. et al. Treatment of lymphomas via regulating the Signal transduction pathways by natural therapeutic approaches: A review. Leuk Res 2021; 104: 106554
- 135 Feng V, Tumati S, Wang R. et al. The Relationship between Oxidative Stress and Subjective Sleep Quality in People with Coronary Artery Disease. Brain Sci 2022; 12 (08) 1070
- 136 Pandey A, Kar SK. Rapid Eye Movement sleep deprivation of rat generates ROS in the hepatocytes and makes them more susceptible to oxidative stress. Sleep Sci 2018; 11 (04) 245-253
- 137 Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A. Immune modulation by curcumin: The role of interleukin-10. Crit Rev Food Sci Nutr 2019; 59 (01) 89-101
- 138 Erfanizadeh M, Noorafshan A, Namavar MR, Karbalay-Doust S, Talaei-Khozani T. Curcumin prevents neuronal loss and structural changes in the superior cervical (sympathetic) ganglion induced by chronic sleep deprivation, in the rat model. Biol Res 2020; 53 (01) 31
- 139 Shafabakhsh R, Mobini M, Raygan F. et al. Curcumin administration and the effects on psychological status and markers of inflammation and oxidative damage in patients with type 2 diabetes and coronary heart disease. Clin Nutr ESPEN 2020; 40: 77-82
- 140 Shojaei M, Sahebkar A, Khorvash F, Fallahpour S, Askari G, Bagherniya M. The effects of phytosomal curcumin supplementation on clinical symptoms, and inflammatory and oxidative stress biomarkers in patients with migraine: A protocol for a randomized double-blind placebo-controlled trial. Avicenna J Phytomed 2023; 13 (01) 45-57
- 141 Jagota A, Reddy MY. The effect of curcumin on ethanol induced changes in suprachiasmatic nucleus (SCN) and pineal. Cell Mol Neurobiol 2007; 27 (08) 997-1006
- 142 Ruan SS, He PC, Cao QQ, Ma T. Curcumin inhibits expression of brain derived neurotrophic factor (BDNF) in hippocampus of mice with sleep deprivation. Trop J Pharm Res 2023; 22 (01) 99-103
- 143 Khyati, Malik I, Agrawal N, Kumar V. Melatonin and curcumin reestablish disturbed circadian gene expressions and restore locomotion ability and eclosion behavior in Drosophila model of Huntington's disease. Chronobiol Int 2021; 38 (01) 61-78
- 144 Allegra A, Mirabile G, Ettari R, Pioggia G, Gangemi S. The Impact of Curcumin on Immune Response: An Immunomodulatory Strategy to Treat Sepsis. Int J Mol Sci 2022; 23 (23) 14710
- 145 Fisher SP, Vyazovskiy VV. Local sleep taking care of high-maintenance cortical circuits under sleep restriction. Sleep 2014; 37 (11) 1727-1730
- 146 Lesku JA, Schmidt MH. Energetic costs and benefits of sleep. Curr Biol 2022; 32 (12) R656-R661
- 147 Williams JA, Naidoo N. Sleep and cellular stress. Curr Opin Physiol 2020; 15: 104-110
- 148 Amin SN. Beyond cognition and sleep: Stop the domino effect. J Exp Clin Med 2023; 40 (01) 132-149
- 149 Khushboo KA. Sharma B. Phytochemicals as Antidepressants. In: Patra JK, Shukla AC, Das G. editors. Advances in Pharmaceutical Biotechnology: Recent Progress and Future Applications [Internet]. Singapore: Springer; 2020. [cited 2023 Oct 30]. p. 115–31. Available from: https://doi.org/10.1007/978-981-15-2195-9_10
- 150 Um MY, Yoon M, Lee J, Jung J, Cho S. A Novel Potent Sleep-Promoting Effect of Turmeric: Turmeric Increases Non-Rapid Eye Movement Sleep in Mice Via Histamine H1Receptor Blockade. Mol Nutr Food Res 2021; 65 (14) e2100100
- 151 Marathe SA, Dasgupta I, Gnanadhas DP, Chakravortty D. Multifaceted roles of curcumin: two sides of a coin!. Expert Opin Biol Ther 2011; 11 (11) 1485-1499
- 152 Maghbooli M, Safarnejad B, Mostafavi H, Mazloomzadeh S, Ghoreishi A. Effect of Nanomicelle Curcumin on Quality of Life and Sleep in Patients With Parkinson's Disease: A Double-Blind, Randomized, and Placebo-Controlled Trial. International Clinical Neuroscience Journal 2019; 6: 140-5
- 153 Yuandani null, Jantan I, Rohani AS, Sumantri IB. Immunomodulatory Effects and Mechanisms of Curcuma Species and Their Bioactive Compounds: A Review. Front Pharmacol 2021; 12: 643119 https://doi.org/10.3389/fphar.2021.643119
- 154 Chang Y-F, Chuang H-Y, Hsu C-H, Liu R-S, Gambhir SS, Hwang J-J. Immunomodulation of curcumin on adoptive therapy with T cell functional imaging in mice. Cancer Prev Res (Phila) 2012; 5: 444-52 https://doi.org/10.1158/1940-6207.CAPR-11-0308
- 155 Makuch S, Więcek K, Woźniak M. The Immunomodulatory and Anti-Inflammatory Effect of Curcumin on Immune Cell Populations, Cytokines, and In Vivo Models of Rheumatoid Arthritis. Pharmaceuticals (Basel) 2021; 14: 309 https://doi.org/10.3390/ph14040309