Subscribe to RSS
DOI: 10.1055/s-0044-1791823
The Evolving Landscape of Small Fiber Neuropathy
Funding This work was supported by funding from the Italian Ministry of Health (RRC).
Abstract
Small fiber neuropathy (SFN) belongs to a heterogeneous group of disorders in which thinly myelinated Aδ and unmyelinated C-fibers are primarily affected, leading to neuropathic pain and autonomic symptoms. SFN can be associated with systemic conditions such as diabetes, autoimmune diseases, exposure to drugs and toxins, and infection, with the list of associated diseases continuing to expand. Variants in the SCN9A, SCN10A, and SCN11A genes encoding Nav 1.7, Nav 1.8, and Nav 1.9 sodium channel subunits, as well as in the TRPA1 gene, have been found in SFN patients, expanding the spectrum of underlying conditions and enhancing our understanding of pathophysiological mechanisms. There is also growing interest in immune-mediated forms that could help identify potentially treatable subgroups. According to international criteria, diagnosis is established through clinical examination, the assessment of intraepidermal nerve fiber density, and/or quantitative sensory testing. Autonomic functional tests allow for a better characterization of dysautonomia in SFN, which can be subclinical. Other tests can support the diagnosis. Currently, the management of SFN prioritizes treating the underlying condition, if identified, within a multidisciplinary approach that combines symptomatic pain therapy, lifestyle changes, and biopsychological interventions. Emerging insights from the molecular characterization of SFN channelopathies hold promise for improving diagnosis, potentially leading to the discovery of new drugs and refining trial designs in the future. This article reviews the clinical presentation, diagnostic workup, and advancing knowledge of associated conditions and interventional management of SFN.
Publication History
Article published online:
21 October 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Hoeijmakers JG, Faber CG, Lauria G, Merkies IS, Waxman SG. Small-fibre neuropathies – advances in diagnosis, pathophysiology and management. Nat Rev Neurol 2012; 8 (07) 369-379
- 2 Johnson SA, Shouman K, Shelly S. et al. Small fiber neuropathy incidence, prevalence, longitudinal impairments, and disability. Neurology 2021; 97 (22) e2236-e2247
- 3 Peters MJ, Bakkers M, Merkies IS, Hoeijmakers JG, van Raak EP, Faber CG. Incidence and prevalence of small-fiber neuropathy: a survey in the Netherlands. Neurology 2013; 81 (15) 1356-1360
- 4 de Greef BTA, Hoeijmakers JGJ, Gorissen-Brouwers CML, Geerts M, Faber CG, Merkies ISJ. Associated conditions in small fiber neuropathy - a large cohort study and review of the literature. Eur J Neurol 2018; 25 (02) 348-355
- 5 Tesfaye S, Boulton AJ, Dyck PJ. et al; Toronto Diabetic Neuropathy Expert Group. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33 (10) 2285-2293
- 6 Devigili G, Tugnoli V, Penza P. et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 2008; 131 (Pt 7): 1912-1925
- 7 Oaklander AL, Herzog ZD, Downs HM, Klein MM. Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia. Pain 2013; 154 (11) 2310-2316
- 8 Nolano M, Provitera V, Estraneo A. et al. Sensory deficit in Parkinson's disease: evidence of a cutaneous denervation. Brain 2008; 131 (Pt 7): 1903-1911
- 9 Ghasemi M, Rajabally YA. Small fiber neuropathy in unexpected clinical settings: a review. Muscle Nerve 2020; 62 (02) 167-175
- 10 Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature 2007; 445 (7130) 858-865
- 11 Talagas M, Lebonvallet N, Leschiera R. et al. Keratinocytes communicate with sensory neurons via synaptic-like contacts. Ann Neurol 2020; 88 (06) 1205-1219
- 12 Gemignani F, Vitetta F, Brindani F, Contini M, Negrotti A. Painful polyneuropathy associated with restless legs syndrome. Clinical features and sensory profile. Sleep Med 2013; 14 (01) 79-84
- 13 Gylfadottir SS, Itani M, Kristensen AG. et al. The characteristics of pain and dysesthesia in patients with diabetic polyneuropathy. PLoS One 2022; 17 (02) e0263831
- 14 Lopate G, Streif E, Harms M, Weihl C, Pestronk A. Cramps and small-fiber neuropathy. Muscle Nerve 2013; 48 (02) 252-255
- 15 Shillo P, Sloan G, Greig M. et al. Painful and painless diabetic neuropathies: What is the difference?. Curr Diab Rep 2019; 19 (06) 32
- 16 Themistocleous AC, Ramirez JD, Shillo PR. et al. The Pain in Neuropathy Study (PiNS): a cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain 2016; 157 (05) 1132-1145
- 17 Breiner A, Lovblom LE, Perkins BA, Bril V. Does the prevailing hypothesis that small-fiber dysfunction precedes large-fiber dysfunction apply to type 1 diabetic patients?. Diabetes Care 2014; 37 (05) 1418-1424
- 18 Gorson KC, Herrmann DN, Thiagarajan R. et al. Non-length dependent small fibre neuropathy/ganglionopathy. J Neurol Neurosurg Psychiatry 2008; 79 (02) 163-169
- 19 Lauria G, Sghirlanzoni A, Lombardi R, Pareyson D. Epidermal nerve fiber density in sensory ganglionopathies: clinical and neurophysiologic correlations. Muscle Nerve 2001; 24 (08) 1034-1039
- 20 Provitera V, Gibbons CH, Wendelschafer-Crabb G. et al. The role of skin biopsy in differentiating small-fiber neuropathy from ganglionopathy. Eur J Neurol 2018; 25 (06) 848-853
- 21 Lauria G, Majorana A, Borgna M. et al. Trigeminal small-fiber sensory neuropathy causes burning mouth syndrome. Pain 2005; 115 (03) 332-337
- 22 Lauria G, Devigili G. Skin biopsy as a diagnostic tool in peripheral neuropathy. Nat Clin Pract Neurol 2007; 3 (10) 546-557
- 23 Leone C, Galosi E, Esposito N. et al. Small-fibre damage is associated with distinct sensory phenotypes in patients with fibromyalgia and small-fibre neuropathy. Eur J Pain 2023; 27 (01) 163-173
- 24 Cazzato D, Castori M, Lombardi R. et al. Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes. Neurology 2016; 87 (02) 155-159
- 25 Igharo D, Thiel JC, Rolke R. et al. Skin biopsy reveals generalized small fibre neuropathy in hypermobile Ehlers-Danlos syndromes. Eur J Neurol 2023; 30 (03) 719-728
- 26 Cazzato D, Lauria G. Small fibre neuropathy. Curr Opin Neurol 2017; 30 (05) 490-499
- 27 Han C, Hoeijmakers JG, Liu S. et al. Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain 2012; 135 (Pt 9): 2613-2628
- 28 Billig SCI, Schauermann JC, Rolke R, Katona I, Schulz JB, Maier A. Quantitative sensory testing predicts histological small fiber neuropathy in postural tachycardia syndrome. Neurol Clin Pract 2020; 10 (05) 428-434
- 29 Bakkers M, Faber CG, Hoeijmakers JG, Lauria G, Merkies IS. Small fibers, large impact: quality of life in small-fiber neuropathy. Muscle Nerve 2014; 49 (03) 329-336
- 30 Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 2014; 13 (09) 924-935
- 31 Balagny P, Wanono R, d'Ortho MP, Vidal-Petiot E. Reply to validation of the new diagnostic tests for neurogenic orthostatic hypotension. Ann Neurol 2018; 84 (06) 957-958
- 32 Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 1989; 246 (4930): 670-673
- 33 Dalsgaard CJ, Rydh M, Haegerstrand A. Cutaneous innervation in man visualized with protein gene product 9.5 (PGP 9.5) antibodies. Histochemistry 1989; 92 (05) 385-390
- 34 Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. J Peripher Nerv Syst 2010; 15 (02) 79-92
- 35 Lauria G, Bakkers M, Schmitz C. et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst 2010; 15 (03) 202-207
- 36 Provitera V, Gibbons CH, Wendelschafer-Crabb G. et al. A multi-center, multinational age- and gender-adjusted normative dataset for immunofluorescent intraepidermal nerve fiber density at the distal leg. Eur J Neurol 2016; 23 (02) 333-338
- 37 Nolano M, Biasiotta A, Lombardi R. et al. Epidermal innervation morphometry by immunofluorescence and bright-field microscopy. J Peripher Nerv Syst 2015; 20 (04) 387-391
- 38 Lauria G, Morbin M, Lombardi R. et al. Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology 2003; 61 (05) 631-636
- 39 Nolano M, Provitera V, Caporaso G, Stancanelli A, Vitale DF, Santoro L. Quantification of pilomotor nerves: a new tool to evaluate autonomic involvement in diabetes. Neurology 2010; 75 (12) 1089-1097
- 40 Gibbons CH, Illigens BM, Wang N, Freeman R. Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology 2009; 72 (17) 1479-1486
- 41 Baron R, Maier C, Attal N. et al; German Neuropathic Pain Research Network (DFNS), and the EUROPAIN, and NEUROPAIN consortia. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 2017; 158 (02) 261-272
- 42 Bakkers M, Faber CG, Reulen JP, Hoeijmakers JG, Vanhoutte EK, Merkies IS. Optimizing temperature threshold testing in small-fiber neuropathy. Muscle Nerve 2015; 51 (06) 870-876
- 43 Backonja MM, Attal N, Baron R. et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain 2013; 154 (09) 1807-1819
- 44 Magerl W, Krumova EK, Baron R, Tölle T, Treede RD, Maier C. Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain 2010; 151 (03) 598-605
- 45 Egenolf N, Zu Altenschildesche CM, Kreß L. et al. Diagnosing small fiber neuropathy in clinical practice: a deep phenotyping study. Ther Adv Neurol Disord 2021; 14: 17 562864211004318
- 46 Tavakoli M, Ferdousi M, Petropoulos IN. et al. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a multinational normative data set. Diabetes Care 2015; 38 (05) 838-843
- 47 Tavakoli M, Marshall A, Pitceathly R. et al. Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol 2010; 223 (01) 245-250
- 48 Gemignani F, Ferrari G, Vitetta F, Giovanelli M, Macaluso C, Marbini A. Non-length-dependent small fibre neuropathy. Confocal microscopy study of the corneal innervation. J Neurol Neurosurg Psychiatry 2010; 81 (07) 731-733
- 49 Gad H, Petropoulos IN, Khan A. et al. Corneal confocal microscopy for the diagnosis of diabetic peripheral neuropathy: a systematic review and meta-analysis. J Diabetes Investig 2022; 13 (01) 134-147
- 50 Gylfadottir SS, Itani M, Kristensen AG. et al. Assessing corneal confocal microscopy and other small fiber measures in diabetic polyneuropathy. Neurology 2023; 100 (16) e1680-e1690
- 51 Cheshire WP, Freeman R, Gibbons CH. et al. Electrodiagnostic assessment of the autonomic nervous system: a consensus statement endorsed by the American Autonomic Society, American Academy of Neurology, and the International Federation of Clinical Neurophysiology. Clin Neurophysiol 2021; 132 (02) 666-682
- 52 Kaur D, Tiwana H, Stino A, Sandroni P. Autonomic neuropathies. Muscle Nerve 2021; 63 (01) 10-21
- 53 Gandhi RA, Marques JL, Selvarajah D, Emery CJ, Tesfaye S. Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care 2010; 33 (07) 1585-1590
- 54 Thaisetthawatkul P, Fernandes Filho JA, Herrmann DN. Autonomic evaluation is independent of somatic evaluation for small fiber neuropathy. J Neurol Sci 2014; 344 (1-2): 51-54
- 55 Rasmussen TK, Karlsson P, Finnerup NB, Jensen TS, Nyengaard JR, Terkelsen AJ. Functional and structural markers of peripheral microvascular autonomic neuropathy. Muscle Nerve 2023; 67 (02) 146-153
- 56 D'Amato C, Morganti R, Di Gennaro F, Greco C, Marfia GA, Spallone V. A novel association between nondipping and painful diabetic polyneuropathy. Diabetes Care 2014; 37 (09) 2640-2642
- 57 Thaisetthawatkul P, Fernandes Filho JA, Herrmann DN. Contribution of QSART to the diagnosis of small fiber neuropathy. Muscle Nerve 2013; 48 (06) 883-888
- 58 Berger MJ, Kimpinski K. Test-retest reliability of quantitative sudomotor axon reflex testing. J Clin Neurophysiol 2013; 30 (03) 308-312
- 59 Tavee JO, Polston D, Zhou L, Shields RW, Butler RS, Levin KH. Sural sensory nerve action potential, epidermal nerve fiber density, and quantitative sudomotor axon reflex in the healthy elderly. Muscle Nerve 2014; 49 (04) 564-569
- 60 Tsapas A, Liakos A, Paschos P. et al. A simple plaster for screening for diabetic neuropathy: a diagnostic test accuracy systematic review and meta-analysis. Metabolism 2014; 63 (04) 584-592
- 61 Provitera V, Nolano M, Caporaso G, Stancanelli A, Santoro L, Kennedy WR. Evaluation of sudomotor function in diabetes using the dynamic sweat test. Neurology 2010; 74 (01) 50-56
- 62 Gibbons CH, Illigens BM, Centi J, Freeman R. QDIRT: quantitative direct and indirect test of sudomotor function. Neurology 2008; 70 (24) 2299-2304
- 63 Sopacua M, Gorissen-Brouwers CML, de Greef BTA. et al. The applicability of the digit wrinkle scan to quantify sympathetic nerve function. Clin Neurophysiol Pract 2022; 7: 115-119
- 64 Abraham A, Alabdali M, Alsulaiman A. et al. Laser Doppler flare imaging and quantitative thermal thresholds testing performance in small and mixed fiber neuropathies. PLoS One 2016; 11 (11) e0165731
- 65 Hijazi MM, Buchmann SJ, Sedghi A. et al. Assessment of cutaneous axon-reflex responses to evaluate functional integrity of autonomic small nerve fibers. Neurol Sci 2020; 41 (07) 1685-1696
- 66 Devigili G, Rinaldo S, Lombardi R. et al. Diagnostic criteria for small fibre neuropathy in clinical practice and research. Brain 2019; 142 (12) 3728-3736
- 67 IDF Diabetes Atlas. 2024. Accessed September 27, 2024 at: https://diabetesatlas.org/
- 68 Russell JW, Zilliox LA. Diabetic neuropathies. Continuum (Minneapolis, Minn) 2014; 20 (5 Peripheral Nervous System Disorders): 1226-1240
- 69 Zhou L, Li J, Ontaneda D, Sperling J. Metabolic syndrome in small fiber sensory neuropathy. J Clin Neuromuscul Dis 2011; 12 (04) 235-243
- 70 Kazamel M, Stino AM, Smith AG. Metabolic syndrome and peripheral neuropathy. Muscle Nerve 2021; 63 (03) 285-293
- 71 Isomaa B, Henricsson M, Almgren P, Tuomi T, Taskinen MR, Groop L. The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia 2001; 44 (09) 1148-1154
- 72 Callaghan BC, Xia R, Reynolds E. et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol 2016; 73 (12) 1468-1476
- 73 Callaghan BC, Xia R, Banerjee M. et al; Health ABC Study. Metabolic syndrome components are associated with symptomatic polyneuropathy independent of glycemic status. Diabetes Care 2016; 39 (05) 801-807
- 74 Gemignani F, Bellanova MF, Saccani E, Pavesi G. Non-length-dependent small fiber neuropathy: not a matter of stockings and gloves. Muscle Nerve 2022; 65 (01) 10-28
- 75 Gendre T, Lefaucheur JP, Nordine T. et al. Characterizing acute-onset small fiber neuropathy. Neurol Neuroimmunol Neuroinflamm 2024; 11 (02) e200195
- 76 Liampas A, Parperis K, Erotocritou MF. et al. Primary Sjögren syndrome-related peripheral neuropathy: a systematic review and meta-analysis. Eur J Neurol 2023; 30 (01) 255-265
- 77 Descamps E, Henry J, Labeyrie C. et al. Small fiber neuropathy in Sjögren syndrome: comparison with other small fiber neuropathies. Muscle Nerve 2020; 61 (04) 515-520
- 78 Tavee J. Peripheral neuropathy in sarcoidosis. J Neuroimmunol 2022; 368: 577864
- 79 Gavrilova N, Starshinova A, Zinchenko Y. et al. Small fiber neuropathy in sarcoidosis. Pathophysiology 2021; 28 (04) 544-550
- 80 Levine TD, Kafaie J, Zeidman LA. et al. Cryptogenic small-fiber neuropathies: serum autoantibody binding to trisulfated heparin disaccharide and fibroblast growth factor receptor-3. Muscle Nerve 2020; 61 (04) 512-515
- 81 Pestronk A, Schmidt RE, Choksi RM, Sommerville RB, Al-Lozi MT. Clinical and laboratory features of neuropathies with serum IgM binding to TS-HDS. Muscle Nerve 2012; 45 (06) 866-872
- 82 Pestronk A, Choksi R, Logigian E, Al-Lozi MT. Sensory neuropathy with monoclonal IgM binding to a trisulfated heparin disaccharide. Muscle Nerve 2003; 27 (02) 188-195
- 83 Antoine JC, Boutahar N, Lassablière F. et al. Antifibroblast growth factor receptor 3 antibodies identify a subgroup of patients with sensory neuropathy. J Neurol Neurosurg Psychiatry 2015; 86 (12) 1347-1355
- 84 Daifallah O, Farah A, Dawes JM. A role for pathogenic autoantibodies in small fiber neuropathy?. Front Mol Neurosci 2023; 16: 1254854
- 85 Fujii T, Lee EJ, Miyachi Y. et al. Antiplexin D1 antibodies relate to small fiber neuropathy and induce neuropathic pain in animals. Neurol Neuroimm 2021; 8 (05) e1028
- 86 Ramanathan S, Tseng M, Davies AJ. et al. Leucine-rich glioma-inactivated 1 versus contactin-associated protein-like 2 antibody neuropathic pain: clinical and biological comparisons. Ann Neurol 2021; 90 (04) 683-690
- 87 Di Giacomo R, Rossi Sebastiano D, Cazzato D. et al. Expanding clinical spectrum of Caspr2 antibody-associated disease: warning on brainstem involvement and respiratory failure. J Neurol Sci 2020; 413: 116865
- 88 Chan ACY, Wong HY, Chong YF. et al. Novel autoantibodies in idiopathic small fiber neuropathy. Ann Neurol 2022; 91 (01) 66-77
- 89 Shikuma CM, Bennett K, Ananworanich J. et al; SEARCH 003 Protocol Team. Distal leg epidermal nerve fiber density as a surrogate marker of HIV-associated sensory neuropathy risk: risk factors and change following initial antiretroviral therapy. J Neurovirol 2015; 21 (05) 525-534
- 90 Mariotto S, Ferrari S, Monaco S. HCV-related central and peripheral nervous system demyelinating disorders. Inflamm Allergy Drug Targets 2014; 13 (05) 299-304
- 91 Leng A, Shah M, Ahmad SA. et al. Pathogenesis underlying neurological manifestations of long COVID syndrome and potential therapeutics. Cells 2023; 12 (05) 816
- 92 Negrut N, Menegas G, Kampioti S. et al. The multisystem impact of long COVID: a comprehensive review. Diagnostics (Basel, Switzerland) 2024; 14 (03) 244
- 93 Hoeijmakers JGJ, Merkies ISJ, Faber CG. Small fiber neuropathies: expanding their etiologies. Curr Opin Neurol 2022; 35 (05) 545-552
- 94 Abrams RMC, Simpson DM, Navis A, Jette N, Zhou L, Shin SC. Small fiber neuropathy associated with SARS-CoV-2 infection. Muscle Nerve 2022; 65 (04) 440-443
- 95 Oaklander AL, Mills AJ, Kelley M. et al. Peripheral neuropathy evaluations of patients with prolonged long COVID. Neurol Neuroimmunol Neuroinflamm 2022; 9 (03) e1146
- 96 Shouman K, Vanichkachorn G, Cheshire WP. et al. Autonomic dysfunction following COVID-19 infection: an early experience. Clin Auton Res 2021; 31 (03) 385-394
- 97 Finsterer J, Scorza FA, Scorza CA, de Almeida AG. Small fiber neuropathy with long-term, multifocal paresthesias after a SARS-CoV-2 vaccination. Clinics (Sao Paulo) 2023; 78: 100186
- 98 Faber CG, Hoeijmakers JG, Ahn HS. et al. Gain of function Naν1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 2012; 71 (01) 26-39
- 99 Faber CG, Lauria G, Merkies IS. et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 2012; 109 (47) 19444-19449
- 100 Huang J, Han C, Estacion M. et al; PROPANE Study Group. Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain 2014; 137 (Pt 6): 1627-1642
- 101 Alsaloum M, Estacion M, Almomani R. et al; Propane Study Group. A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy. Mol Pain 2019; 15: 17 44806919849802
- 102 Alsaloum M, Labau JIR, Sosniak D. et al. A novel gain-of-function sodium channel β2 subunit mutation in idiopathic small fiber neuropathy. J Neurophysiol 2021; 126 (03) 827-839
- 103 Hoeijmakers JG, Han C, Merkies IS. et al. Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. Brain 2012; 135 (Pt 2): 345-358
- 104 Waxman SG, Merkies ISJ, Gerrits MM. et al. Sodium channel genes in pain-related disorders: phenotype-genotype associations and recommendations for clinical use. Lancet Neurol 2014; 13 (11) 1152-1160
- 105 Marchi M, Salvi E, Andelic M. et al. TRPA1 rare variants in chronic neuropathic and nociplastic pain patients. Pain 2023; 164 (09) 2048-2059
- 106 Masuda T, Ueda M, Suenaga G. et al. Early skin denervation in hereditary and iatrogenic transthyretin amyloid neuropathy. Neurology 2017; 88 (23) 2192-2197
- 107 Leonardi L, Adam C, Beaudonnet G. et al. Skin amyloid deposits and nerve fiber loss as markers of neuropathy onset and progression in hereditary transthyretin amyloidosis. Eur J Neurol 2022; 29 (05) 1477-1487
- 108 Chan ACY, Kumar S, Tan G. et al. Expanding the genetic causes of small-fiber neuropathy: SCN genes and beyond. Muscle Nerve 2023; 67 (04) 259-271
- 109 Devigili G, De Filippo M, Ciana G. et al. Chronic pain in Gaucher disease: skeletal or neuropathic origin?. Orphanet J Rare Dis 2017; 12 (01) 148
- 110 Farschtschi SC, Mainka T, Glatzel M. et al. C-fiber loss as a possible cause of neuropathic pain in Schwannomatosis. Int J Mol Sci 2020; 21 (10) 3569
- 111 Barnett C, Alon T, Abraham A. et al. Evidence of small-fiber neuropathy in neurofibromatosis type 1. Muscle Nerve 2019; 60 (06) 673-678
- 112 Tagliapietra M, Incensi A, Ferrarini M. et al. Clinical and pathology characterization of small nerve fiber neuro(no)pathy in cerebellar ataxia with neuropathy and vestibular areflexia syndrome. Eur J Neurol 2023; 30 (12) 3834-3841
- 113 Dalla Bella E, Lombardi R, Porretta-Serapiglia C. et al. Amyotrophic lateral sclerosis causes small fiber pathology. Eur J Neurol 2016; 23 (02) 416-420
- 114 Grayston R, Czanner G, Elhadd K. et al. A systematic review and meta-analysis of the prevalence of small fiber pathology in fibromyalgia: implications for a new paradigm in fibromyalgia etiopathogenesis. Semin Arthritis Rheum 2019; 48 (05) 933-940
- 115 Smith AG, Russell J, Feldman EL. et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 2006; 29 (06) 1294-1299
- 116 Finnerup NB, Attal N, Haroutounian S. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015; 14 (02) 162-173
- 117 Attal N, de Andrade DC, Adam F. et al. Safety and efficacy of repeated injections of botulinum toxin A in peripheral neuropathic pain (BOTNEP): a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2016; 15 (06) 555-565
- 118 McDonnell A, Collins S, Ali Z. et al. Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain 2018; 159 (08) 1465-1476
- 119 Labau JIR, Estacion M, Tanaka BS. et al. Differential effect of lacosamide on Nav1.7 variants from responsive and non-responsive patients with small fibre neuropathy. Brain 2020; 143 (03) 771-782
- 120 de Greef BTA, Hoeijmakers JGJ, Geerts M. et al. Lacosamide in patients with Nav1.7 mutations-related small fibre neuropathy: a randomized controlled trial. Brain 2019; 142 (02) 263-275
- 121 Oaklander AL, Klein MM. Evidence of small-fiber polyneuropathy in unexplained, juvenile-onset, widespread pain syndromes. Pediatrics 2013; 131 (04) e1091-e1100
- 122 Gaillet A, Champion K, Lefaucheur JP, Trout H, Bergmann JF, Sène D. Intravenous immunoglobulin efficacy for primary Sjögren's syndrome associated small fiber neuropathy. Autoimmun Rev 2019; 18 (11) 102387
- 123 Tavee JO, Karwa K, Ahmed Z, Thompson N, Parambil J, Culver DA. Sarcoidosis-associated small fiber neuropathy in a large cohort: clinical aspects and response to IVIG and anti-TNF alpha treatment. Respir Med 2017; 126: 135-138
- 124 Gibbons CH, Rajan S, Senechal K, Hendry E, McCallister B, Levine TD. A double-blind placebo-controlled pilot study of immunoglobulin for small fiber neuropathy associated with TS-HDS and FGFR-3 autoantibodies. Muscle Nerve 2023; 67 (05) 363-370
- 125 Geerts M, de Greef BTA, Sopacua M. et al. Intravenous immunoglobulin therapy in patients with painful idiopathic small fiber neuropathy. Neurology 2021; 96 (20) e2534-e2545
- 126 van Beek M, Geurts JW, Slangen R. et al. Severity of neuropathy is associated with long-term spinal cord stimulation outcome in painful diabetic peripheral neuropathy: five-year follow-up of a prospective two-center clinical trial. Diabetes Care 2018; 41 (01) 32-38
- 127 Weisman A, Quintner J. On “a mechanism-based approach to physical therapist management of pain.” . Phys Ther 2018; 98 (09) 817
- 128 Damci A, Schruers KRJ, Leue C, Faber CG, Hoeijmakers JGJ. Anxiety and depression in small fiber neuropathy. J Peripher Nerv Syst 2022; 27 (04) 291-301
- 129 Telesca A, Soldini E, Devigili G. et al. Cognitive, behavioral, and psychological phenotypes in small fiber neuropathy: a case-control study. Cortex 2024; 173: 208-221
- 130 Pindi Sala T, Villedieu M, Damian L. et al. Long-term efficacy of immunoglobulins in small fiber neuropathy related to Sjögren's syndrome. J Neurol 2020; 267 (12) 3499-3507
- 131 Khoshnoodi MA, Truelove S, Burakgazi A, Hoke A, Mammen AL, Polydefkis M. Longitudinal assessment of small fiber neuropathy: evidence of a non-length-dependent distal axonopathy. JAMA Neurol 2016; 73 (06) 684-690
- 132 Flossdorf P, Haupt WF, Brunn A. et al. Long-time course of idiopathic small fiber neuropathy. Eur Neurol 2018; 79 (3-4): 161-165
- 133 MacDonald S, Sharma TL, Li J, Polston D, Li Y. Longitudinal follow-up of biopsy-proven small fiber neuropathy. Muscle Nerve 2019; 60 (04) 376-381
- 134 Shouman K, Sandroni P. Antibody testing for suspected autoimmune autonomic dysfunction and small fiber neuropathies. J Clin Neurophysiol 2021; 38 (04) 274-278
- 135 de Greef BT, Hoeijmakers JG, Wolters EE. et al. No Fabry disease in patients presenting with isolated small fiber neuropathy. PLoS One 2016; 11 (02) e0148316