CC BY-NC-ND 4.0 · Indian J Radiol Imaging
DOI: 10.1055/s-0044-1791230
Commentary

Real-Time Evaluation of Lumbar Instability Using Dynamic MRI: A Commentary on Current Approaches and Developmental Opportunities

1   MU-Wood College of Osteopathic Medicine, Marian University, Indianapolis, Indiana, United States
› Author Affiliations
Funding None.

Abstract

This brief commentary presents the current approaches and challenges concerning the use of dynamic magnetic resonance imaging (MRI) to evaluate lumbar instability in real time. In a continuum of using end-of-range static imaging to detect and quantify lumbar instability, this commentary outlines current approaches, limitations, and potential developmental opportunities of using MRI to quantify dynamic intervertebral displacements for investigating mechanistic underpinnings of back pain.



Publication History

Article published online:
26 September 2024

© 2024. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Leone A, Cianfoni A, Cerase A, Magarelli N, Bonomo L. Lumbar spondylolysis: a review. Skeletal Radiol 2011; 40 (06) 683-700
  • 2 Chen SR, LeVasseur CM, Pitcairn S. et al. In vivo evidence of early instability and late stabilization in motion segments immediately superior to anterior cervical arthrodesis. Spine 2022; 47 (17) 1234-1240
  • 3 Sengupta DK, Fan H. The basis of mechanical instability in degenerative disc disease: a cadaveric study of abnormal motion versus load distribution. Spine 2014; 39 (13) 1032-1043
  • 4 Canal S, Tamburro R, Falerno I. et al. Development of real-time kinematic magnetic resonance imaging (kMRI) techniques for studying the kinematics of the spine and joints in dogs-preliminary study on cadavers. Animals (Basel) 2022; 12 (20) 2790
  • 5 Aleksiev M, Krämer M, Brisson NM, Maggioni MB, Duda GN, Reichenbach JR. High-resolution CINE imaging of active guided knee motion using continuously acquired golden-angle radial MRI and rotary sensor information. Magn Reson Imaging 2022; 92: 161-168
  • 6 Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 1992; 5 (04) 390-396 , discussion 397
  • 7 Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol 2003; 13 (04) 371-379
  • 8 Mahato NK. Complexity of neutral zones, lumbar stability and subsystem adaptations: probable alterations in lumbosacral transitional vertebrae (LSTV) subtypes. Med Hypotheses 2013; 80 (01) 61-64
  • 9 Zhang F, Wang H, Xu H. et al. Radiologic analysis of kinematic characteristics of modic changes based on lumbar disc degeneration grade. World Neurosurg 2018; 114: e851-e856
  • 10 Alyas F, Connell D, Saifuddin A. Upright positional MRI of the lumbar spine. Clin Radiol 2008; 63 (09) 1035-1048
  • 11 Mahato NK, Maharaj P, Clark BC. Lumbar spine anatomy in supine versus weight- bearing magnetic resonance imaging: detecting significant positional changes and testing reliability of quantification. Asian Spine J 2024; 18 (01) 1-11
  • 12 Zhou QS, Sun X, Chen X. et al. Utility of natural sitting lateral radiograph in the diagnosis of segmental instability for patients with degenerative lumbar spondylolisthesis. Clin Orthop Relat Res 2021; 479 (04) 817-825
  • 13 Walter WR, Alizai H, Bruno M, Portugal S, Burke CJ. Real-time dynamic 3-T MRI assessment of spine kinematics: a feasibility study utilizing three different fast pulse sequences. Acta Radiol 2021; 62 (01) 58-66
  • 14 Paholpak P, Tamai K, Shoell K, Sessumpun K, Buser Z, Wang JC. Can multi-positional magnetic resonance imaging be used to evaluate angular parameters in cervical spine? A comparison of multi-positional MRI to dynamic plain radiograph. Eur Spine J 2018; 27 (05) 1021-1027
  • 15 Walter WR, Burke CJ. Editorial commentary: real-time dynamic magnetic resonance imaging of the patellofemoral joint: ready for prime time?. Arthroscopy 2022; 38 (05) 1581-1583
  • 16 Burke CJ, Samim M, Babb JS, Walter WR. Utility of a 2D kinematic HASTE sequence in magnetic resonance imaging assessment of adjacent segment degeneration following anterior cervical discectomy and fusion. Eur Radiol 2024; 34 (02) 1113-1122
  • 17 Allmann KH, Schäfer O, Uhl M. et al. Kinematic versus static MRI study of the cervical spine in patients with rheumatoid arthritis. Rofo 1999; 170 (01) 22-27
  • 18 Ellingson AM, Nagel TM, Polly DW, Ellermann J, Nuckley DJ. Quantitative T2* (T2 star) relaxation times predict site specific proteoglycan content and residual mechanics of the intervertebral disc throughout degeneration. J Orthop Res 2014; 32 (08) 1083-1089
  • 19 Lao L, Daubs MD, Takahashi S. et al. Kinetic magnetic resonance imaging analysis of lumbar segmental motion at levels adjacent to disc herniation. Eur Spine J 2016; 25 (01) 222-229
  • 20 Mahato NK, Sybert D, Law T, Clark B. Effects of spine loading in a patient with post-decompression lumbar disc herniation: observations using an open weight-bearing MRI. Eur Spine J 2017; 26 (Suppl. 01) 17-23
  • 21 Rijken NH, van Engelen BG, de Rooy JW, Geurts AC, Weerdesteyn V. Trunk muscle involvement is most critical for the loss of balance control in patients with facioscapulohumeral muscular dystrophy. Clin Biomech (Bristol, Avon) 2014; 29 (08) 855-860
  • 22 Bisschop A, van Royen BJ, Mullender MG. et al. Which factors prognosticate spinal instability following lumbar laminectomy?. Eur Spine J 2012; 21 (12) 2640-2648
  • 23 Sabnis AB, Chamoli U, Diwan AD. Is L5-S1 motion segment different from the rest? A radiographic kinematic assessment of 72 patients with chronic low back pain. Eur Spine J 2018; 27 (05) 1127-1135
  • 24 Koo TK, Kwok WE. A non-ionizing technique for three-dimensional measurement of the lumbar spine. J Biomech 2016; 49 (16) 4073-4079
  • 25 Daffner SD, Xin J, Taghavi CE. et al. Cervical segmental motion at levels adjacent to disc herniation as determined with kinetic magnetic resonance imaging. Spine 2009; 34 (22) 2389-2394
  • 26 Rogers BP, Haughton VM, Arfanakis K, Meyerand ME. Application of image registration to measurement of intervertebral rotation in the lumbar spine. Magn Reson Med 2002; 48 (06) 1072-1075
  • 27 Mahato NK, Montuelle S, Cotton J, Williams S, Thomas J, Clark B. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment. BMC Med Imaging 2016; 16 (01) 38
  • 28 Bessho T, Hayashi T, Shibukawa S, Kourin K, Shouda T. Clinical application of single-shot fast spin-echo sequence for cerebrospinal fluid flow MR imaging. Radiol Phys Technol 2024; 17 (03) 782-792