Int J Angiol
DOI: 10.1055/s-0044-1788280
Review Article

Atherogenic Effect of Homocysteine, a Biomarker of Inflammation and Its Treatment

Kailash Prasad
1   Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
› Author Affiliations

Abstract

Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis. Ischemic stroke and heart disease, coronary heart disease, and cardiovascular disease are events resulting from long-lasting and silent atherosclerosis. This paper deals with the synthesis of homocysteine (Hcy), causes of HHcy, mechanism of HHcy-induced atherosclerosis, and treatment of HHcy. Synthesis and metabolism of Hcy involves demethylation, transmethylation, and transsulfuration, and these processes require vitamin B6 and vitamin B12 folic acid (vitamin B9). Causes of HHcy include deficiency of vitamins B6, B9, and B12, genetic defects, use of smokeless tobacco, cigarette smoking, alcohol consumption, diabetes, rheumatoid arthritis, low thyroid hormone, consumption of caffeine, folic acid antagonist, cholesterol-lowering drugs (niacin), folic acid antagonist (phenytoin), prolonged use of proton pump inhibitors, metformin, and hypertension. HHcy-induced atherosclerosis may be mediated through oxidative stress, decreased availability of nitric oxide (NO), increased expression of monocyte chemoattractant protein-1, smooth muscle cell proliferation, increased thrombogenicity, and induction of arterial connective tissue. HHcy increases the generation of atherogenic biomolecules such as nuclear factor-kappa B, proinflammatory cytokines (IL-1β, IL-6, and IL-8), cell adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selection), growth factors (IGF-1 and TGF-β), and monocyte colony-stimulating factor which lead to the development of atherosclerosis. NO which is protective against the development of atherosclerosis is reduced by HHcy. Therapy with folic acid, vitamin B6, and vitamin B12 lowers the levels of Hcy, with folic acid being the most effective. Dietary sources of folic acid, vitamin B6, vitamin B12, omega-3 fatty acid, and green coffee extract reduce Hcy. Abstaining from drinking coffee and alcohol, and smoking also reduces blood levels of Hcy. In conclusion, HHcy induces atherosclerosis by generating atherogenic biomolecules, and treatment of atherosclerosis-induced diseases may be by reducing the levels of Hcy.



Publication History

Article published online:
08 July 2024

© 2024. International College of Angiology. This article is published by Thieme.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Lehotský J, Tothová B, Kovalská M. et al. Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front Neurosci 2016; 10: 538
  • 2 Holmen M, Hvas A-M, Arendt JFH. Hyperhomocysteinemia and ischemic stroke: a potential dose-response association—a systematic review and meta-analysis. TH Open 2021; 5 (03) e420-e437
  • 3 Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev 2019; 49: 144-164
  • 4 Stehouwer CDA, Weijenberg MP, van den Berg M, Jakobs C, Feskens EJ, Kromhout D. Serum homocysteine and risk of coronary heart disease and cerebrovascular disease in elderly men: a 10-year follow-up. Arterioscler Thromb Vasc Biol 1998; 18 (12) 1895-1901
  • 5 Karger AB, Steffen BT, Nomura SO. et al. Association between homocysteine and vascular calcification incidence, prevalence, and progression in the MESA cohort. J Am Heart Assoc 2020; 9 (03) e013934
  • 6 Homocysteine NG. B vitamins, and cardiovascular risk. In: Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults 2015;309–318
  • 7 Mishra N. Hyperhomocysteinemia: a risk of CVD. Int J Res Biol Sci 2016; 6: 13-19
  • 8 Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J 2015; 14 (01) 6
  • 9 Skeete J, DiPette DJ. Relationship between homocysteine and hypertension: new data add to the debate. J Clin Hypertens (Greenwich) 2017; 19 (11) 1171-1172
  • 10 Sun P, Wang Q, Zhang Y, Huo Y, Nima N, Fan J. Association between homocysteine level and blood pressure traits among Tibetans: a cross-sectional study in China. Medicine (Baltimore) 2019; 98 (27) e16085
  • 11 Nygård O, Vollset SE, Refsum H. et al. Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA 1995; 274 (19) 1526-1533
  • 12 Ninomiya T, Kiyohara Y, Kubo M. et al. Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. Am J Kidney Dis 2004; 44 (03) 437-445
  • 13 Piazzolla G, Candigliota M, Fanelli M. et al. Hyperhomocysteinemia is an independent risk factor of atherosclerosis in patients with metabolic syndrome. Diabetol Metab Syndr 2019; 11: 87
  • 14 Gauthier GM, Keevil JG, McBride PE, Gregory M. The association of homocysteine and coronary artery disease. Clin Cardiol 2003; 26 (12) 563-568
  • 15 Ospina-Romero M, Cannegieter SC, den Heijer M, Doggen CJM, Rosendaal FR, Lijfering WM. Hyperhomocysteinemia and risk of first venous thrombosis: the influence of (unmeasured) confounding factors. Am J Epidemiol 2018; 187 (07) 1392-1400
  • 16 Sławek J, Białecka M. Homocysteine and dementia. In: Diet and Nutrition in Dementia and Cognitive Decline. 2015: 611-621
  • 17 Seshadri S, Beiser A, Selhub J. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 2002; 346 (07) 476-483
  • 18 Zhang L, Xie X, Sun Y, Zhou F. Blood and CSF homocysteine levels in Alzheimer's Disease: a meta-analysis and meta-regression of case-control studies. Neuropsychiatr Dis Treat 2022; 18: 2391-2403
  • 19 Mudd SH, Skovby F, Levy HL. et al. The natural history of homocystinuria due to cystathionine β-synthase deficiency. Am J Hum Genet 1985; 37 (01) 1-31
  • 20 Boers GHJ, Smals AGH, Trijbels FJM. et al. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 1985; 313 (12) 709-715
  • 21 Malinow MR, Kang SS, Taylor LM. et al. Prevalence of hyperhomocyst(e)inemia in patients with peripheral arterial occlusive disease. Circulation 1989; 79 (06) 1180-1188
  • 22 Stampfer MJ, Malinow MR, Willett WC. et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992; 268 (07) 877-881
  • 23 Arnesen E, Refsum H, Bønaa KH, Ueland PM, Førde OH, Nordrehaug JE. Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995; 24 (04) 704-709
  • 24 Perry IJ. Homocysteine as a risk factor for cerebrovascular disease and stroke. In: Robinson K. eds. Homocysteine and Vascular Disease. Developments in Cardiovascular Medicine, vol 230. Dordrecht: Springer; 2000
  • 25 Prasad K. Homocysteine, a risk factor for cardiovascular disease. Int J Angiol 1999; 8 (01) 76-86
  • 26 Lee P, Prasad K. Hyperhomocysteinemia and venous thrombosis. Int J Low Extrem Wounds 2002; 1 (01) 4-12
  • 27 Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 1993; 39 (09) 1764-1779
  • 28 Kang SS, Wong PW, Norusis M. Homocysteinemia due to folate deficiency. Metabolism 1987; 36 (05) 458-462
  • 29 Selhub J, Miller JW. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr 1992; 55 (01) 131-138
  • 30 Wang N, Chen M, Gao J. et al. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells. Talanta 2019; 195: 281-289
  • 31 Cohen E, Margalit I, Shochat T, Goldberg E, Krause I. Gender differences in homocysteine concentrations, a population-based cross-sectional study. Nutr Metab Cardiovasc Dis 2019; 29 (01) 9-14
  • 32 McCully KS. Homocysteine, vitamins, and vascular disease prevention. Am J Clin Nutr 2007; 86 (05) 1563S-1568S
  • 33 Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993; 270 (22) 2693-2698
  • 34 Miller JW, Nadeau MR, Smith D, Selhub J. Vitamin B-6 deficiency vs folate deficiency: comparison of responses to methionine loading in rats. Am J Clin Nutr 1994; 59 (05) 1033-1039
  • 35 Horigan G, McNulty H, Ward M, Strain JJ, Purvis J, Scott JM. Riboflavin lowers blood pressure in cardiovascular disease patients homozygous for the 677C–>T polymorphism in MTHFR. J Hypertens 2010; 28 (03) 478-486
  • 36 Wilson CP, McNulty H, Scott JM, Strain JJ, Ward M. Postgraduate symposium: the MTHFR C677T polymorphism, B-vitamins and blood pressure. Proc Nutr Soc 2010; 69 (01) 156-165
  • 37 Iqbal MP, Yakub M. Smokeless tobacco use: a risk factor for hyperhomocysteinemia in a Pakistani population. PLoS One 2013; 8 (12) e83826
  • 38 Haj Mouhamed D, Ezzaher A, Neffati F, Douki W, Najjar MF. Effect of cigarette smoking on plasma homocysteine concentrations. Clin Chem Lab Med 2011; 49 (03) 479-483
  • 39 Bleich S, Bleich K, Kropp S. et al. Moderate alcohol consumption in social drinkers raises plasma homocysteine levels: a contradiction to the ‘French Paradox’?. Alcohol Alcohol 2001; 36 (03) 189-192
  • 40 Platt DE, Hariri E, Salameh P. et al. Type II diabetes mellitus and hyperhomocysteinemia: a complex interaction. Diabetol Metab Syndr 2017; 9: 19
  • 41 Hernanz A, Plaza A, Martín-Mola E, De Miguel E. Increased plasma levels of homocysteine and other thiol compounds in rheumatoid arthritis women. Clin Biochem 1999; 32 (01) 65-70
  • 42 Catargi B, Parrot-Roulaud F, Cochet C, Ducassou D, Roger P, Tabarin A. Homocysteine, hypothyroidism, and effect of thyroid hormone replacement. Thyroid 1999; 9 (12) 1163-1166
  • 43 Nygård O, Refsum H, Ueland PM. et al. Coffee consumption and plasma total homocysteine: the Hordaland Homocysteine Study. Am J Clin Nutr 1997; 65 (01) 136-143
  • 44 Küpeli E, Cengiz C, Cila A, Karnak D. Hyperhomocysteinemia due to pernicious anemia leading to pulmonary thromboembolism in a heterozygous mutation carrier. Clin Appl Thromb Hemost 2008; 14 (03) 365-368
  • 45 Hasan T, Arora R, Bansal AK, Bhattacharya R, Sharma GS, Singh LR. Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med 2019; 51 (02) 1-13
  • 46 Ballal RS, Jacobsen DW, Robinson K. Homocysteine: update on a new risk factor. Cleve Clin J Med 1997; 64 (10) 543-549
  • 47 Garg R, Malinow M, Pettinger M, Upson B, Hunninghake D. Niacin treatment increases plasma homocyst(e)ine levels. Am Heart J 1999; 138 (6 Pt 1): 1082-1087
  • 48 Tayal R, Yasmin S, Chauhan S. et al. Are proton pump inhibitors contributing in emergency new hypertensive population. Pharmaceuticals (Basel) 2023; 16 (10) 1387
  • 49 Zhang Q, Li S, Li L. et al. Metformin treatment and homocysteine: a systematic review and meta-analysis of randomized controlled trials. Nutrients 2016; 8 (12) 798
  • 50 Brustolin S, Giugliani R, Félix TM. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res 2010; 43 (01) 1-7
  • 51 Shenoy V, Mehendale V, Prabhu K, Shetty R, Rao P. Correlation of serum homocysteine levels with the severity of coronary artery disease. Indian J Clin Biochem 2014; 29 (03) 339-344
  • 52 Veeranna V, Zalawadiya SK, Niraj A. et al. Homocysteine and reclassification of cardiovascular disease risk. J Am Coll Cardiol 2011; 58 (10) 1025-1033
  • 53 Lim U, Cassano PA. Homocysteine and blood pressure in the third national health and nutrition examination survey, 1988–1994. Am J Epidemiol 2002; 156 (12) 1105-1113
  • 54 McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969; 56 (01) 111-128
  • 55 Gauthier GM, Keevil JG, McBride PE. The association of homocysteine and coronary artery disease. Clin Cardiol 2003; 26 (12) 563-568
  • 56 Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002; 325 (7374): 1202
  • 57 Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995; 274 (13) 1049-1057
  • 58 Eikelboom JW, Lonn E, Genest Jr J, Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 1999; 131 (05) 363-375
  • 59 Eberhardt RT, Forgione MA, Cap A. et al. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 2000; 106 (04) 483-491
  • 60 Blundell G, Jones BG, Rose FA, Tudball N. Homocysteine mediated endothelial cell toxicity and its amelioration. Atherosclerosis 1996; 122 (02) 163-172
  • 61 Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol 2022; 13: 1039241
  • 62 Craige SM, Kant S, Keaney Jr JF. Reactive oxygen species in endothelial function—from disease to adaptation. Circ J 2015; 79: 1145-1155
  • 63 Olszewski AJ, McCully KS. Homocysteine metabolism and the oxidative modification of proteins and lipids. Free Radic Biol Med 1993; 14 (06) 683-693
  • 64 Stamler JS, Osborne JA, Jaraki O. et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 1993; 91 (01) 308-318
  • 65 Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 2005; 289 (06) H2649-H2656
  • 66 Jacobsen DW. Hyperhomocysteinemia and oxidative stress: time for a reality check?. Arterioscler Thromb Vasc Biol 2000; 20 (05) 1182-1184
  • 67 Perna AF, Ingrosso D, Lombardi C. et al. Possible mechanisms of homocysteine toxicity. Kidney Int Suppl 2003; 63 (84) S137-S140
  • 68 Hayden MR, Tyagi SC. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleiotropic effects of folate supplementation. Nutr J 2004; 3: 4
  • 69 Alvarez-Maqueda M, El Bekay R, Monteseirín J. et al. Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration. Atherosclerosis 2004; 172 (02) 229-238
  • 70 Toborek M, Kopieczna-Grzebieniak E, Drózdz M, Wieczorek M. Increased lipid peroxidation as a mechanism of methionine-induced atherosclerosis in rabbits. Atherosclerosis 1995; 115 (02) 217-224
  • 71 Liu H-H, Shih T-S, Huang H-R, Huang S-C, Lee L-H, Huang Y-C. Plasma homocysteine is associated with increased oxidative stress and antioxidant enzyme activity in welders. ScientificWorldJournal 2013; 2013: 370487
  • 72 Steinberg D. Antioxidants in the prevention of human atherosclerosis. Summary of the proceedings of a National Heart, Lung, and Blood Institute Workshop: September 5-6, 1991, Bethesda, Maryland. Circulation 1992; 85 (06) 2337-2344
  • 73 Prasad K, Kalra J. Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J 1993; 125 (04) 958-973
  • 74 Prasad K, Mishra M. Mechanism of hypercholesterolemia-induced atherosclerosis. Rev Cardiovasc Med 2022; 23: 212
  • 75 Chiu JJ, Wung BS, Shyy JY, Hsieh HJ, Wang DL. Reactive oxygen species are involved in shear stress-induced intercellular adhesion molecule-1 expression in endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17 (12) 3570-3577
  • 76 Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal 2011; 15 (06) 1607-1638
  • 77 Rahman A, Kefer J, Bando M, Niles WD, Malik AB. E-selectin expression in human endothelial cells by TNF-alpha-induced oxidant generation and NF-kappaB activation. Am J Physiol 1998; 275 (03) L533-L544
  • 78 Hofmann MA, Drury S, Fu C. et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999; 97 (07) 889-901
  • 79 Su CM, Wang L, Yoo D. Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci Rep 2021; 11 (01) 13464
  • 80 Pignol B, Hénane S, Mencia-Huerta JM, Rola-Pleszczynski M, Braquet P. Effect of platelet-activating factor (PAF-acether) and its specific receptor antagonist, BN 52021, on interleukin 1 (IL1) release and synthesis by rat spleen adherent monocytes. Prostaglandins 1987; 33 (06) 931-939
  • 81 Bonavida B, Mencia-Huerta JM, Braquet P. Effect of platelet-activating factor on monocyte activation and production of tumor necrosis factor. Int Arch Allergy Appl Immunol 1989; 88 (1-2): 157-160
  • 82 Delafontaine P, Ku L. Reactive oxygen species stimulate insulin-like growth factor I synthesis in vascular smooth muscle cells. Cardiovasc Res 1997; 33 (01) 216-222
  • 83 Chung J, Huda MN, Shin Y. et al. Correlation between oxidative stress and transforming growth factor-beta in cancers. Int J Mol Sci 2021; 22 (24) 13181
  • 84 Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 2010; 13 (01) 39-75
  • 85 Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N. Oxidized low-density lipoprotein. Methods Mol Biol 2010; 610: 403-417
  • 86 Steinberg D, Witztum JL. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis?. Circulation 2002; 105 (17) 2107-2111
  • 87 Prasad K, Mantha SV, Kalra J. et al. Purpurogallin in the prevention of hypercholesterolemic atherosclerosis. Int J Angiol 1997; 6: 157-166
  • 88 Prasad K. Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation 1999; 99 (10) 1355-1362
  • 89 Poznyak AV, Nikiforov NG, Markin AM. et al. Overview of OxLDL and its impact on cardiovascular health: focus on atherosclerosis. Front Pharmacol 2021; 11: 613780
  • 90 Prasad K. Pathophysiology of atherosclerosis. In: Chang JB, Olsen ER, Prasad K, Sumpio BE. eds. Textbook of Angiology. New York: Springer; 2000: 85-106
  • 91 Matthys KE, Bult H. Nitric oxide function in atherosclerosis. Mediators Inflamm 1997; 6 (01) 3-21
  • 92 Wever RMF, Lüscher TF, Cosentino F, Rabelink TJ. Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 1998; 97 (01) 108-112
  • 93 De Caterina R, Libby P, Peng HB. et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96 (01) 60-68
  • 94 Gauthier TW, Scalia R, Murohara T, Guo JP, Lefer AM. Nitric oxide protects against leukocyte-endothelium interactions in the early stages of hypercholesterolemia. Arterioscler Thromb Vasc Biol 1995; 15 (10) 1652-1659
  • 95 Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 2017; 120 (04) 713-735
  • 96 Huang H, Koelle P, Fendler M. et al. Induction of inducible nitric oxide synthase (iNOS) expression by oxLDL inhibits macrophage derived foam cell migration. Atherosclerosis 2014; 235 (01) 213-222
  • 97 Degjoni A, Campolo F, Stefanini L, Venneri MA. The NO/cGMP/PKG pathway in platelets: the therapeutic potential of PDE5 inhibitors in platelet disorders. J Thromb Haemost 2022; 20 (11) 2465-2474
  • 98 Zhang B, Qin Y, Wang Y. A nitric oxide-eluting and REDV peptide-conjugated coating promotes vascular healing. Biomaterials 2022; 284: 121478
  • 99 Stühlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 2001; 104 (21) 2569-2575
  • 100 Blom HJ, Kleinveld HA, Boers GH. et al. Lipid peroxidation and susceptibility of low-density lipoprotein to in vitro oxidation in hyperhomocysteinaemia. Eur J Clin Invest 1995; 25 (03) 149-154
  • 101 Yuan D, Chu J, Lin H. et al. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front Cardiovasc Med 2023; 9: 1109445
  • 102 Upchurch Jr GR, Welch GN, Fabian AJ. et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 1997; 272 (27) 17012-17017
  • 103 Patel RP, Moellering D, Murphy-Ullrich J, Jo H, Beckman JS, Darley-Usmar VM. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med 2000; 28 (12) 1780-1794
  • 104 Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87 (01) 315-424
  • 105 Handy DE, Zhang Y, Loscalzo J. Homocysteine down-regulates cellular glutathione peroxidase (GPx1) by decreasing translation. J Biol Chem 2005; 280 (16) 15518-15525
  • 106 Naruszewicz M, Mirkiewicz E, Olszewski AJ, McCully KS. Thiolation of low-density lipoprotein by homocysteine thiolactone causes increased aggregation and altered interaction with cultured macrophages. Nutr Metab Cardiovasc Dis 1994; 4: 70-77
  • 107 Sung FL, Slow YL, Wang G, Lynn EG. , O K. Homocysteine stimulates the expression of monocyte chemoattractant protein-1 in endothelial cells leading to enhanced monocyte chemotaxis. Mol Cell Biochem 2001; 216 (1-2): 121-128
  • 108 Zeng X, Dai J, Remick DG, Wang X. Homocysteine mediated expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human monocytes. Circ Res 2003; 93 (04) 311-320
  • 109 Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 2001; 103 (22) 2717-2723
  • 110 Au-Yeung KK, Woo CW, Sung FL, Yip JC, Siow YL. , O K. Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress. Circ Res 2004; 94 (01) 28-36
  • 111 Wang G, Siow YL. , O K. Homocysteine induces monocyte chemoattractant protein-1 expression by activating NF-kappaB in THP-1 macrophages. Am J Physiol Heart Circ Physiol 2001; 280 (06) H2840-H2847
  • 112 Borowska M, Winiarska H, Dworacka M, Wesołowska A, Dworacki G, Mikołajczak PŁ. The effect of homocysteine on the secretion of Il-1β, Il-6, Il-10, Il-12 and RANTES by peripheral blood mononuclear cells-an in vitro study. Molecules 2021; 26 (21) 6671
  • 113 Desai A, Lankford HA, Warren JS. Homocysteine augments cytokine-induced chemokine expression in human vascular smooth muscle cells: implications for atherogenesis. Inflammation 2001; 25 (03) 179-186
  • 114 Su S-J, Huang L-W, Pai L-S, Liu H-W, Chang K-L. Homocysteine at pathophysiologic concentrations activates human monocyte and induces cytokine expression and inhibits macrophage migration inhibitory factor expression. Nutrition 2005; 21 (10) 994-1002
  • 115 Silverman MD, Tumuluri RJ, Davis M, Lopez G, Rosenbaum JT, Lelkes PI. Homocysteine upregulates vascular cell adhesion molecule-1 expression in cultured human aortic endothelial cells and enhances monocyte adhesion. Arterioscler Thromb Vasc Biol 2002; 22 (04) 587-592
  • 116 Alkhoury K, Parkin SM, Homer-Vanniasinkam S, Graham AM. Chronic homocysteine exposure upregulates endothelial adhesion molecules and mediates leukocyte: endothelial cell interactions under flow conditions. Eur J Vasc Endovasc Surg 2011; 41 (03) 429-435
  • 117 Raaf L, Noll C, Cherifi MelH. et al. Myocardial fibrosis and TGFB expression in hyperhomocysteinemic rats. Mol Cell Biochem 2011; 347 (1-2): 63-70
  • 118 Pang X, Liu J, Zhao J. et al. Homocysteine induces the expression of C-reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis 2014; 236 (01) 73-81
  • 119 Zou T, Yang W, Hou Z, Yang J. Homocysteine enhances cell proliferation in vascular smooth muscle cells: role of p38 MAPK and p47phox. Acta Biochim Biophys Sin (Shanghai) 2010; 42 (12) 908-915
  • 120 Liu X, Luo F, Li J, Wu W, Li L, Chen H. Homocysteine induces connective tissue growth factor expression in vascular smooth muscle cells. J Thromb Haemost 2008; 6 (01) 184-192
  • 121 Chen C, Halkos ME, Surowiec SM, Conklin BS, Lin PH, Lumsden AB. Effects of homocysteine on smooth muscle cell proliferation in both cell culture and artery perfusion culture models. J Surg Res 2000; 88 (01) 26-33
  • 122 Chiang JK, Sung ML, Yu HR. et al. Homocysteine induces smooth muscle cell proliferation through differential regulation of cyclins A and D1 expression. J Cell Physiol 2011; 226 (04) 1017-1026
  • 123 Ma SC, Zhang HP, Jiao Y. et al. Homocysteine-induced proliferation of vascular smooth muscle cells occurs via PTEN hypermethylation and is mitigated by Resveratrol. Mol Med Rep 2018; 17 (04) 5312-5319
  • 124 Hofmann MA, Lalla E, Lu Y. et al. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 2001; 107 (06) 675-683
  • 125 Zhou J, Möller J, Danielson CC. et al. Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21 (09) 1470-1476
  • 126 Ubbink JB, Vermaak WJ, van der Merwe A, Becker PJ, Delport R, Potgieter HC. Vitamin requirements for the treatment of hyperhomocysteinemia in humans. J Nutr 1994; 124 (10) 1927-1933
  • 127 Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 1996; 27 (03) 517-527
  • 128 Miodownik C, Lerner V, Vishne T, Sela BA, Levine J. High-dose vitamin B6 decreases homocysteine serum levels in patients with schizophrenia and schizoaffective disorders: a preliminary study. Clin Neuropharmacol 2007; 30 (01) 13-17
  • 129 Brattström L. Vitamins as homocysteine-lowering agents. J Nutr 1996; 126 (4, suppl) 1276S-1280S
  • 130 Franken DG, Boers GH, Blom HJ, Trijbels JM. Effect of various regimens of vitamin B6 and folic acid on mild hyperhomocysteinaemia in vascular patients. J Inherit Metab Dis 1994; 17 (01) 159-162
  • 131 Halczuk K, Kaźmierczak-Barańska J, Karwowski BT, Karmańska A, Cieślak M. Vitamin B12-multifaceted in vivo functions and in vitro applications. Nutrients 2023; 15 (12) 2734
  • 132 Tucker KL, Mahnken B, Wilson PW, Jacques P, Selhub J. Folic acid fortification of the food supply. Potential benefits and risks for the elderly population. JAMA 1996; 276 (23) 1879-1885
  • 133 Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995; 274 (13) 1049-1057
  • 134 Carmel R. The disappearance of cobalamin absorption testing: a critical diagnostic loss. J Nutr 2007; 137 (11) 2481-2484
  • 135 Köse S, Sözlü S, Bölükbaşi H, Ünsal N, Gezmen-Karadağ M. Obesity is associated with folate metabolism. Int J Vitam Nutr Res 2020; 90 (3-4): 353-364
  • 136 Zappacosta B, Mastroiacovo P, Persichilli S. et al. Homocysteine lowering by folate-rich diet or pharmacological supplementations in subjects with moderate hyperhomocysteinemia. Nutrients 2013; 5 (05) 1531-1543
  • 137 Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN. The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond) 2017; 14: 78
  • 138 Pawlak R. Is vitamin B12 deficiency a risk factor for cardiovascular disease in vegetarians?. Am J Prev Med 2015; 48 (06) e11-e26
  • 139 Obersby D, Chappell DC, Dunnett A, Tsiami AA. Plasma total homocysteine status of vegetarians compared with omnivores: a systematic review and meta-analysis. Br J Nutr 2013; 109 (05) 785-794
  • 140 Foscolou A, Rallidis LS, Tsirebolos G. et al. The association between homocysteine levels, Mediterranean diet and cardiovascular disease: a case-control study. Int J Food Sci Nutr 2019; 70 (05) 603-611
  • 141 Teixeira JA, Steluti J, Gorgulho BM. et al. Prudent dietary pattern influences homocysteine level more than folate, vitamin B12, and docosahexaenoic acid: a structural equation model approach. Eur J Nutr 2020; 59 (01) 81-91
  • 142 Maroto-Sánchez B, Lopez-Torres O, Palacios G, González-Gross M. What do we know about homocysteine and exercise? A review from the literature. Clin Chem Lab Med 2016; 54 (10) 1561-1577
  • 143 Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis 2011; 34 (01) 3-15
  • 144 Craig SA. Betaine in human nutrition. Am J Clin Nutr 2004; 80 (03) 539-549
  • 145 Dawson SL, Bowe SJ, Crowe TC. A combination of omega-3 fatty acids, folic acid and B-group vitamins is superior at lowering homocysteine than omega-3 alone: a meta-analysis. Nutr Res 2016; 36 (06) 499-508
  • 146 Pooya Sh, Jalali MD, Jazayery AD, Saedisomeolia A, Eshraghian MR, Toorang F. The efficacy of omega-3 fatty acid supplementation on plasma homocysteine and malondialdehyde levels of type 2 diabetic patients. Nutr Metab Cardiovasc Dis 2010; 20 (05) 326-331
  • 147 Ochiai R, Jokura H, Suzuki A. et al. Green coffee bean extract improves human vasoreactivity. Hypertens Res 2004; 27 (10) 731-737
  • 148 Li W, Zheng T, Wang J, Altura BT, Altura BM. Extracellular magnesium regulates effects of vitamin B6, B12 and folate on homocysteinemia-induced depletion of intracellular free magnesium ions in canine cerebral vascular smooth muscle cells: possible relationship to [Ca2+]i, atherogenesis and stroke. Neurosci Lett 1999; 274 (02) 83-86
  • 149 Guo H, Lee JD, Uzui H. et al. Effects of folic acid and magnesium on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells. Circ J 2006; 70 (01) 141-146
  • 150 Soni CV, Tyagi SC, Todnem ND. et al. Hyperhomocysteinemia alters sinoatrial and atrioventricular nodal function: role of magnesium in attenuating these effects. Cell Biochem Biophys 2016; 74 (01) 59-65
  • 151 Gibson A, Woodside JV, Young IS. et al. Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers—a randomized, crossover intervention study. QJM 2008; 101 (11) 881-887
  • 152 Kim DB, Oh YS, Yoo KD. et al. Passive smoking in never-smokers is associated with increased plasma homocysteine levels. Int Heart J 2010; 51 (03) 183-187
  • 153 Shi Z, Guan Y, Huo YR. et al. Elevated total homocysteine levels in acute ischemic stroke are associated with long-term mortality. Stroke 2015; 46 (09) 2419-2425
  • 154 Kumral E, Saruhan G, Aktert D, Orman M. Association of hyperhomocysteinemia with stroke recurrence after initial stroke. J Stroke Cerebrovasc Dis 2016; 25 (08) 2047-2054
  • 155 Knekt P, Reunanen A, Alfthan G. et al. Hyperhomocystinemia: a risk factor or a consequence of coronary heart disease?. Arch Intern Med 2001; 161 (13) 1589-1594