Semin Respir Crit Care Med
DOI: 10.1055/s-0044-1787876
Review Article

Bronchoscopic Lung Volume Reduction: A Review

Shreya Podder
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
,
Marium Khan
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
,
Zane Sink
2   Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Lillington, North Carolina
,
Steven Verga
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
3   Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin
,
Jonathan S. Kurman
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
3   Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin
,
Elizabeth Malsin
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
3   Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin
› Author Affiliations

Abstract

Bronchoscopic lung volume reduction (BLVR) is an established treatment modality for the management of advanced chronic obstructive pulmonary disease complicated by severe emphysema and hyperinflation refractory to other therapies. BLVR aims to reduce hyperinflation and residual volume, thereby improving pulmonary function, symptom control, and quality of life. Multiple distinct devices and technologies, including endobronchial coils, thermal vapor ablation, bio-lung volume reduction, and airway bypass stenting, have been developed to achieve lung volume reduction with varying degrees of accessibility and evidence. The most promising BLVR treatment modality to date has been the placement of one-way endobronchial valves (EBVs), with more than 25,000 cases performed worldwide. Identifying symptomatic patients who would benefit from BLVR is challenging and can be time and resource intensive, and candidacy may be limited by physiologic parameters. Additional new technologies may be able to improve the identification and evaluation of candidates as well as increase the portion of evaluated patients who ultimately qualify for BLVR. In this review, we aim to provide historical context to BLVR, summarize the available evidence regarding its use, discuss potential complications, and provide readers with a clear guide to patient selection and referral for BLVR, with a focus on EBV placement. In addition, we will highlight potential future directions for the field.



Publication History

Article published online:
18 July 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis 2015; 10: 261-276
  • 2 Stanojevic S. Standardisation of lung function test interpretation: Global Lung Function Initiative. Lancet Respir Med 2018; 6 (01) 10-12
  • 3 GLOBAL INITIATIVE FOR CHRONIC OBSTRUCTIVE LUNG DISEASE GLOBAL STRATEGY FOR THE DIAGNOSIS. MANAGEMENT, AND PREVENTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (2023 REPORT) [Internet]. 2022 . Accessed 30 May 2024 at: www.goldcopd.org
  • 4 Pellegrino R, Viegi G, Brusasco V. et al. Interpretative strategies for lung function tests. Eur Respir J 2005; 26 (05) 948-968
  • 5 Stanojevic S, Kaminsky DA, Miller MR. et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J 2022; 60 (01) 2101499
  • 6 Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet 2012; 379 (9823) 1341-1351
  • 7 Smith BM, Austin JHM, Newell Jr. JD. et al. Pulmonary emphysema subtypes on computed tomography: the MESA COPD study. Am J Med 2014; 127 (01) 94.e7-94.e23
  • 8 Langer D, Ciavaglia CE, Neder JA, Webb KA, O'Donnell DE. Lung hyperinflation in chronic obstructive pulmonary disease: mechanisms, clinical implications and treatment. Expert Rev Respir Med 2014; 8 (06) 731-749
  • 9 Terry PB, Traystman RJ. The clinical significance of collateral ventilation. Ann Am Thorac Soc 2016; 13 (12) 2251-2257
  • 10 Safiri S, Carson-Chahhoud K, Noori M. et al. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: results from the Global Burden of Disease Study 2019. BMJ 2022; 378: e069679
  • 11 Pathak U, Gupta NC, Suri JC. Risk of COPD due to indoor air pollution from biomass cooking fuel: a systematic review and meta-analysis. Int J Environ Health Res 2020; 30 (01) 75-88
  • 12 Pavlov N, Haynes AG, Stucki A, Jüni P, Ott SR. Long-term oxygen therapy in COPD patients: population-based cohort study on mortality. Int J Chron Obstruct Pulmon Dis 2018; 13: 979-988
  • 13 Rochester CL, Alison JA, Carlin B. et al. Pulmonary rehabilitation for adults with chronic respiratory disease: an official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med 2023; 208 (04) e7-e26
  • 14 De L'Auscultation Médiate; ou Traité du Diagnostic des Maladies des Poumons et du Cœur, fondé principalement sur ce Nouveau Moyen d'Exploration. Edinb Med Surg J 1822; 18 (72) 447-474
  • 15 Brantigan OC, Mueller E. Surgical treatment of pulmonary emphysema. Am Surg 1957; 23 (09) 789-804
  • 16 Brantigan OC, Kress MB, Mueller EA. The surgical approach to pulmonary emphysema. Dis Chest 1961; 39 (05) 485-499
  • 17 Cooper JD, Trulock EP, Triantafillou AN. et al. Bilateral pneumectomy (volume reduction) for chronic obstructive pulmonary disease. J Thorac Cardiovasc Surg 1995; 109 (01) 106-116 , discussion 116–119
  • 18 Fishman A, Martinez F, Naunheim K. et al; National Emphysema Treatment Trial Research Group. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med 2003; 348 (21) 2059-2073
  • 19 van Agteren JEM, Carson KV, Tiong LU, Smith BJ. Lung volume reduction surgery for diffuse emphysema. Cochrane Database Syst Rev 2016; 10 (10) CD001001
  • 20 Pompeo E, Rogliani P, Tacconi F. et al; Awake Thoracic Surgery Research Group. Randomized comparison of awake nonresectional versus nonawake resectional lung volume reduction surgery. J Thorac Cardiovasc Surg 2012; 143 (01) 47-54 , 54.e1
  • 21 Greening NJ, Vaughan P, Oey I. et al. Individualised risk in patients undergoing lung volume reduction surgery: the Glenfield BFG score. Eur Respir J 2017; 49 (06) 1601766
  • 22 Gülşen A. Bronchoscopic lung volume reduction: a 2018 review and update. Turk Thorac J 2018; 19 (03) 141-149
  • 23 Roodenburg SA, Hartman JE, Deslée G. et al. Bronchoscopic lung volume reduction coil treatment for severe emphysema: a systematic review and meta-analysis of individual participant data. Respiration 2022; 101 (07) 697-705
  • 24 Food and Drug Administration Center for Devices and Radiological Health Summary Minutes of the Anesthesiology and Respiratory Therapy Devices Panel of the Medical Devices Advisory Committee Meeting. Accessed October 30, 2023 at: https://www.fda.gov/media/113821/download
  • 25 Applicant Submitted Protocol: Endobronchial Coil System for the treatment of Severe Emphysema Medical Services Advisory Committee. Accessed October 30, 2023 at: http://www.msac.gov.au/internet/msac/publishing.nsf/Content/F08BFC33DC901BDDCA25801000123C05/$File/1401-EndobronchialCoil-RatifiedFinalProtocol-accessible.docx
  • 26 Koster TD, Eberhardt R, Huebner RH. et al. A multicenter, prospective, single-arm clinical investigation of a modified staged treatment algorithm using the AeriSeal system - The STAGE trial. Respir Med 2022; 203: 106989
  • 27 Study Details | Mind The Gap - Crossing Borders Study | ClinicalTrials.gov [Internet]. Accessed 30 October 2023at: https://clinicaltrials.gov/study/NCT04256408?cond=NCT04256408;&rank=1
  • 28 Study Details | Fissure Closure With the AeriSeal System for CONVERTing Collateral Ventilation Status (CONVERT) | ClinicalTrials.gov [Internet]. Accessed 30 October 2023 at: https://clinicaltrials.gov/study/NCT04559464?cond=
  • 29 Gompelmann D, Eberhardt R, Herth FJF. Technology update: bronchoscopic thermal vapor ablation for managing severe emphysema. Med Devices (Auckl) 2014; 7: 335-341
  • 30 Gompelmann D, Eberhardt R, Ernst A. et al. The localized inflammatory response to bronchoscopic thermal vapor ablation. Respiration 2013; 86 (04) 324-331
  • 31 Toma TP, Hopkinson NS, Hillier J. et al. Bronchoscopic volume reduction with valve implants in patients with severe emphysema. Lancet 2003; 361 (9361) 931-933
  • 32 Galluccio G, Lucantoni G. Bronchoscopic lung volume reduction for pulmonary emphysema: preliminary experience with a new NOVATECH endobronchial silicone one-way valve. Interact Cardiovasc Thorac Surg 2010; 11 (02) 213-215
  • 33 Levin A, Sklyuev S, Felker I, Tceymach E, Krasnov D. Endobronchial valve treatment of destructive multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2016; 20 (11) 1539-1545
  • 34 Leroy S, Marquette CH. VENT: International study of bronchoscopic lung volume reduction as a palliative treatment for emphysema. Rev Mal Respir 2004; 21 (6, Pt 1): 1144-1152
  • 35 Valipour A, Slebos DJ, Herth F. et al; IMPACT Study Team. Endobronchial valve therapy in patients with homogeneous emphysema results from the IMPACT study. Am J Respir Crit Care Med 2016; 194 (09) 1073-1082
  • 36 Kemp SV, Slebos DJ, Kirk A. et al; TRANSFORM Study Team *. A multicenter randomized controlled trial of zephyr endobronchial valve treatment in heterogeneous emphysema (Transform). Am J Respir Crit Care Med 2017; 196 (12) 1535-1543
  • 37 Criner GJ, Delage A, Voelker K. et al. Improving lung function in severe heterogenous Emphysema with the Spiration Valve System (EMPROVE) a multicenter, open-label randomized controlled clinical trial. Am J Respir Crit Care Med 2019; 200 (11) 1354-1362
  • 38 Criner GJ, Sue R, Wright S. et al; LIBERATE Study Group. A multicenter randomized controlled trial of Zephyr Endobronchial Valve treatment in heterogeneous emphysema (LIBERATE). Am J Respir Crit Care Med 2018; 198 (09) 1151-1164
  • 39 Li S, Wang G, Wang C. et al. The REACH trial: a randomized controlled trial assessing the safety and effectiveness of the Spiration® valve system in the treatment of severe emphysema. Respiration 2019; 97 (05) 416-427
  • 40 Sciurba FC, Ernst A, Herth FJF. et al; VENT Study Research Group. A randomized study of endobronchial valves for advanced emphysema. N Engl J Med 2010; 363 (13) 1233-1244
  • 41 Davey C, Zoumot Z, Jordan S. et al. Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial. Lancet 2015; 386 (9998) 1066-1073
  • 42 Patel M, Chowdhury J, Zhao H. et al. Meta-analysis and systematic review of bronchoscopic lung volume reduction through endobronchial valves in severe emphysema. J Bronchology Interv Pulmonol 2022; 29 (03) 224-237
  • 43 Hartman JE, Welling JBA, Klooster K, Carpaij OA, Augustijn SWS, Slebos DJ. Survival in COPD patients treated with bronchoscopic lung volume reduction. Respir Med 2022; 196: 106825
  • 44 Welling JBA, Hartman JE, Augustijn SWS. et al. Patient selection for bronchoscopic lung volume reduction. Int J Chron Obstruct Pulmon Dis 2020; 15: 871-881
  • 45 Klooster K, Slebos DJ. Endobronchial valves for the treatment of advanced emphysema. Chest 2021; 159 (05) 1833-1842
  • 46 Koster TD, Dijk MV, Slebos DJ. Bronchoscopic lung volume reduction for emphysema: review and update. Semin Respir Crit Care Med 2022; 43 (04) 541-551
  • 47 Koster TD, Klooster K, Ten Hacken NHT, van Dijk M, Slebos DJ. Endobronchial valve therapy for severe emphysema: an overview of valve-related complications and its management. Expert Rev Respir Med 2020; 14 (12) 1235-1247
  • 48 Pulmonx | Zephyr Valve, Chartis & StratX Technology [Internet]. Accessed 20 October 2023 at: https://pulmonx.com/technology/
  • 49 Spiration Valve System for Treatment of Severe Emphysema | Olympus America | Medical [Internet]. Accessed 20 October 2023 at: https://medical.olympusamerica.com/products/spiration-valve-system-treatment-severe-emphysema
  • 50 The Spiration Valve System. | Download Scientific Diagram . Accessed 30 October 2023 at: https://www.researchgate.net/figure/The-Spiration-R-Valve-System_fig1_329668004/actions#reference
  • 51 Wagh A, Ravikumar N, Hogarth DK. Pneumothorax as a result of bronchoscopic lung volume reduction with endobronchial valves: a clinical practice review of risk and management strategies. Shanghai Chest 2023;7
  • 52 Egenod T, Tricard J, Fumat R. et al. Two-stage bronchoscopic endobronchial valve treatment can lead to progressive lung volume reduction and may decrease pneumothorax risk. Int J Chron Obstruct Pulmon Dis 2021; 16: 1957-1965
  • 53 Kumar A, Dy R, Singh K, Jeffery Mador M. Early trends in bronchoscopic lung volume reduction: a systematic review and meta-analysis of efficacy parameters. Lung 2017; 195 (01) 19-28
  • 54 MacDuff A, Arnold A, Harvey J. BTS Pleural Disease Guideline Group. Management of spontaneous pneumothorax: British Thoracic Society Pleural Disease Guideline 2010. Thorax 2010; 65 (Suppl. 02) ii18-ii31
  • 55 Baumann MH, Strange C, Heffner JE. et al; AACP Pneumothorax Consensus Group. Management of spontaneous pneumothorax: an American College of Chest Physicians Delphi consensus statement. Chest 2001; 119 (02) 590-602
  • 56 Dugan KC, Laxmanan B, Murgu S, Hogarth DK. Management of persistent air leaks. Chest 2017; 152 (02) 417-423
  • 57 Weill D. Lung transplantation: indications and contraindications. J Thorac Dis 2018; 10 (07) 4574-4587
  • 58 Travaline JM, McKenna Jr. RJ, De Giacomo T. et al; Endobronchial Valve for Persistent Air Leak Group. Treatment of persistent pulmonary air leaks using endobronchial valves. Chest 2009; 136 (02) 355-360
  • 59 Frazão M, Silva PE, Frazão W, da Silva VZM, Correia Jr. MAV, Neto MG. Dynamic hyperinflation impairs cardiac performance during exercise in COPD. J Cardiopulm Rehabil Prev 2019; 39 (03) 187-192
  • 60 Valipour A, Fernandez-Bussy S, Ing AJ. et al. Bronchial rheoplasty for treatment of chronic bronchitis. twelve-month results from a multicenter clinical trial. Am J Respir Crit Care Med 2020; 202 (05) 681-689
  • 61 Study Details | RejuvenAir System Trial for COPD With Chronic Bronchitis | ClinicalTrials.gov [Internet]. Accessed 30 October 2023 at: https://clinicaltrials.gov/study/NCT03893370
  • 62 May N, Niehaus-Gebele C, Reichenberger F, Behr J, Gesierich W. Screening for bronchoscopic lung volume reduction: reasons for not receiving interventional treatment. Lung 2020; 198 (01) 221-228
  • 63 Martin MJ, Dulohery Scrodin MM, Edell ES. et al. Bronchoscopic lung volume reduction: highlighting the patient selection process. Mayo Clin Proc 2023; 98 (09) 1347-1352
  • 64 Ash SY, San José Estépar R, Fain SB. et al; COPDGene Investigators and the COPD Biomarker Qualification Consortium. Relationship between emphysema progression at CT and mortality in ever-smokers: results from the COPDGene and ECLIPSE cohorts. Radiology 2021; 299 (01) 222-231
  • 65 Galbán CJ, Han MK, Boes JL. et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 2012; 18 (11) 1711-1715
  • 66 Perch M, Riise GC, Hogarth K. et al. Endoscopic treatment of native lung hyperinflation using endobronchial valves in single-lung transplant patients: a multinational experience. Clin Respir J 2015; 9 (01) 104-110
  • 67 Amja JJ, Khan AN, Goyal A, Dilling DF. Endobronchial valve treatment for native lung hyperinflation in a single-lung transplant patient. Am J Respir Crit Care Med 2022; 205: A4152