Semin Respir Crit Care Med
DOI: 10.1055/s-0044-1787875
Review Article

Developing Interventions for Chronic Obstructive Pulmonary Disease

Audra J. Schwalk
1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
,
Niral M. Patel
2   Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Diego, San Diego, California
,
Nagendra Y. Madisi
3   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Albany Medical College, Albany, New York
› Institutsangaben

Abstract

Chronic obstructive pulmonary disease (COPD) is an incurable, progressive respiratory disease that may have a significant negative impact on the morbidity and mortality of affected patients. A substantial portion of the world's population is affected by COPD, and despite optimal medical management with medications, supplemental oxygen, and pulmonary rehabilitation, many patients are left debilitated because of this disease. Bronchoscopic treatment modalities offer a less-invasive method for the treatment of refractory COPD compared to surgical interventions and have expanded the potential therapeutic options for these patients. Bronchoscopic lung volume reduction is aimed at decreasing the hyperinflation and air trapping that occur in emphysema, and the most studied and successful intervention is endobronchial valve placement. Endobronchial coils, polymeric sealants, and thermal ablation are other researched alternatives. Additional interventional procedures are being investigated for the treatment of the mucus hypersecretion and cough that are associated with the chronic bronchitis phenotype of COPD and include targeted lung denervation, metered dose spray cryotherapy, deobstruction balloon, and bronchial rheoplasty. This review summarizes the most recent evidence pertaining to available therapies for the management of COPD, including chronic bronchitis, with a particular focus on bronchoscopic interventions.



Publikationsverlauf

Artikel online veröffentlicht:
05. Juli 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Agustí A, Celli BR, Criner GJ. et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur Respir J 2023; 61 (04) 2300239
  • 2 Safiri S, Carson-Chahhoud K, Noori M. et al. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: results from the Global Burden of Disease Study 2019. BMJ 2022; 378: e069679
  • 3 Association AL. 2023 . Accessed May 28, 2024 at: https://www.lung.org/research/trends-in-lung-disease/copd-trends-brief/copd-burden
  • 4 Celli B, Fabbri L, Criner G. et al. Definition and nomenclature of chronic obstructive pulmonary disease: time for its revision. Am J Respir Crit Care Med 2022; 206 (11) 1317-1325
  • 5 Petty TL. The history of COPD. Int J Chron Obstruct Pulmon Dis 2006; 1 (01) 3-14
  • 6 Kouri A, Dandurand RJ, Usmani OS, Chow CW. Exploring the 175-year history of spirometry and the vital lessons it can teach us today. Eur Respir Rev 2021; 30 (162) 210081
  • 7 Spriggs EA. The history of spirometry. Br J Dis Chest 1978; 72 (03) 165-180
  • 8 Fletcher CM, Pride NB. Definitions of emphysema, chronic bronchitis, asthma, and airflow obstruction: 25 years on from the Ciba symposium. Thorax 1984; 39 (02) 81-85
  • 9 Symposium Mot C. Terminology, definitions, and classification of chronic pulmonary emphysema and related conditions. Thorax 1959; 14: 286-299
  • 10 Harris HW. Chronic bronchitis, emphysema, and asthma. Am J Public Health Nations Health 1963; 53 (Suppl. 03) 7-15
  • 11 Rodriguez-Roisin R, Rabe KF, Vestbo J, Vogelmeier C, Agustí A. all previous and current members of the Science Committee and the Board of Directors of GOLD (goldcopd.org/committees/). Global Initiative for Chronic Obstructive Lung Disease (GOLD) 20th Anniversary: a brief history of time. Eur Respir J 2017; 50 (01) 1700671
  • 12 Khan KS, Jawaid S, Memon UA. et al. Management of chronic obstructive pulmonary disease (COPD) exacerbations in hospitalized patients from admission to discharge: a comprehensive review of therapeutic interventions. Cureus 2023; 15 (08) e43694
  • 13 Bhatt SP, Rabe KF, Hanania NA. et al; BOREAS Investigators. Dupilumab for COPD with type 2 inflammation indicated by eosinophil counts. N Engl J Med 2023; 389 (03) 205-214
  • 14 Ohnishi H, Eitoku M, Yokoyama A. A systematic review and integrated analysis of biologics that target type 2 inflammation to treat COPD with increased peripheral blood eosinophils. Heliyon 2022; 8 (06) e09736
  • 15 Yousuf A, Brightling CE. Biologic drugs: a new target therapy in COPD?. COPD 2018; 15 (02) 99-107
  • 16 Evans RA, Singh SJ, Collier R, Williams JE, Morgan MD. Pulmonary rehabilitation is successful for COPD irrespective of MRC dyspnoea grade. Respir Med 2009; 103 (07) 1070-1075
  • 17 Nici L, Singh SJ, Holland AE, ZuWallack RL. Opportunities and challenges in expanding pulmonary rehabilitation into the home and community. Am J Respir Crit Care Med 2019; 200 (07) 822-827
  • 18 Troosters T, Casaburi R, Gosselink R, Decramer M. Pulmonary rehabilitation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 172 (01) 19-38
  • 19 Crisafulli E, Clini EM. Measures of dyspnea in pulmonary rehabilitation. Multidiscip Respir Med 2010; 5 (03) 202-210
  • 20 Ahmed I, Mustafaoglu R, Yeldan I, Yasaci Z, Erhan B. Effect of pulmonary rehabilitation approaches on dyspnea, exercise capacity, fatigue, lung functions, and quality of life in patients with COVID-19: a systematic review and meta-analysis. Arch Phys Med Rehabil 2022; 103 (10) 2051-2062
  • 21 Mendes Xavier D, Lanza Galvão E, Aliane Fonseca A, de Souza GM, Pereira Lima V. Effects of home-based pulmonary rehabilitation on dyspnea, exercise capacity, quality of life and impact of the disease in COPD patients: a systematic review. COPD 2022; 19 (01) 18-46
  • 22 Goldklang M, Stockley R. Pathophysiology of emphysema and implications. Chronic Obstr Pulm Dis (Miami) 2016; 3 (01) 454-458
  • 23 Robins AG. Pathophysiology of emphysema. Clin Chest Med 1983; 4 (03) 413-420
  • 24 Petersson J, Glenny RW. Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J 2014; 44 (04) 1023-1041
  • 25 Ernst A, Anantham D. Bronchoscopic lung volume reduction. Semin Thorac Cardiovasc Surg 2010; 22 (04) 330-337
  • 26 Marruchella A, Faverio P, Bonaiti G, Pesci A. History of lung volume reduction procedures. J Thorac Dis 2018; 10 (Suppl. 27) S3326-S3334
  • 27 McGraw LR. Lung volume reduction surgery: an overview. Heart Lung 1997; 26 (02) 131-137 , quiz 138–139
  • 28 Weinmann GG, Chiang YP, Sheingold S. The National Emphysema Treatment Trial (NETT): a study in agency collaboration. Proc Am Thorac Soc 2008; 5 (04) 381-384
  • 29 Criner GJ, Cordova F, Sternberg AL, Martinez FJ. The National Emphysema Treatment Trial (NETT): Part I: lessons learned about emphysema. Am J Respir Crit Care Med 2011; 184 (07) 763-770
  • 30 Criner GJ, Cordova F, Sternberg AL, Martinez FJ. The National Emphysema Treatment Trial (NETT) Part II: lessons learned about lung volume reduction surgery. Am J Respir Crit Care Med 2011; 184 (08) 881-893
  • 31 Fishman A, Martinez F, Naunheim K. et al; National Emphysema Treatment Trial Research Group. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med 2003; 348 (21) 2059-2073
  • 32 Al-Jaghbeer MJ, Hatipoglu U, Murthy S, Meli Y, Mehta AC. Lower lobe lung volume reduction surgery: a case report. Oxf Med Case Rep 2020; 2020 (09) omaa067
  • 33 Gelb AF, McKenna RJ, Brenner M, Fischel R, Zamel N. Lung function after bilateral lower lobe lung volume reduction surgery for alpha1-antitrypsin emphysema. Eur Respir J 1999; 14 (04) 928-933
  • 34 Beckers F, Lange N, Koryllos A, Picchioni F, Windisch W, Stoelben E. Unilateral lobe resection by video-assisted thoracoscopy leads to the most optimal functional improvement in severe emphysema. Thorac Cardiovasc Surg 2016; 64 (04) 336-342
  • 35 Decker MR, Leverson GE, Jaoude WA, Maloney JD. Lung volume reduction surgery since the National Emphysema Treatment Trial: study of Society of Thoracic Surgeons Database. J Thorac Cardiovasc Surg 2014; 148 (06) 2651-8.e1
  • 36 Gelb AF, McKenna Jr RJ, Brenner M, Epstein JD, Zamel N. Lung function 5 yr after lung volume reduction surgery for emphysema. Am J Respir Crit Care Med 2001; 163 (07) 1562-1566
  • 37 Sciurba FC, Ernst A, Herth FJ. et al; VENT Study Research Group. A randomized study of endobronchial valves for advanced emphysema. N Engl J Med 2010; 363 (13) 1233-1244
  • 38 Davey C, Zoumot Z, Jordan S. et al. Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial. Lancet 2015; 386 (9998) 1066-1073
  • 39 Herth FJ, Noppen M, Valipour A. et al; International VENT Study Group. Efficacy predictors of lung volume reduction with Zephyr valves in a European cohort. Eur Respir J 2012; 39 (06) 1334-1342
  • 40 Criner GJ, Delage A, Voelker K. et al. Improving lung function in severe heterogenous emphysema with the spiration valve system (EMPROVE). A multicenter, open-label randomized controlled clinical trial. Am J Respir Crit Care Med 2019; 200 (11) 1354-1362
  • 41 Criner GJ, Sue R, Wright S. et al; LIBERATE Study Group. A multicenter randomized controlled trial of Zephyr endobronchial valve treatment in heterogeneous emphysema (LIBERATE). Am J Respir Crit Care Med 2018; 198 (09) 1151-1164
  • 42 Kemp SV, Slebos DJ, Kirk A. et al; TRANSFORM Study Team *. A multicenter randomized controlled trial of Zephyr endobronchial valve treatment in heterogeneous emphysema (TRANSFORM). Am J Respir Crit Care Med 2017; 196 (12) 1535-1543
  • 43 Klooster K, ten Hacken NH, Hartman JE, Kerstjens HA, van Rikxoort EM, Slebos DJ. Endobronchial valves for emphysema without interlobar collateral ventilation. N Engl J Med 2015; 373 (24) 2325-2335
  • 44 Valipour A, Slebos DJ, Herth F. et al; IMPACT Study Team. Endobronchial Valve therapy in patients with homogeneous emphysema. Results from the IMPACT study. Am J Respir Crit Care Med 2016; 194 (09) 1073-1082
  • 45 Patel M, Chowdhury J, Zhao H. et al. Meta-analysis and systematic review of bronchoscopic lung volume reduction through endobronchial valves in severe emphysema. J Bronchology Interv Pulmonol 2022; 29 (03) 224-237
  • 46 Buttery SC, Banya W, Bilancia R. et al; CELEB investigators. Lung volume reduction surgery versus endobronchial valves: a randomised controlled trial. Eur Respir J 2023; 61 (04) 2202063
  • 47 Klooster K, Koster TD, Ruwwe-Glösenkamp C. et al. An integrative approach of the fissure completeness score and Chartis assessment in endobronchial valve treatment for emphysema. Int J Chron Obstruct Pulmon Dis 2020; 15: 1325-1334
  • 48 DeMarco B, MacRosty CR. Bronchoscopic management of COPD and advances in therapy. Life (Basel) 2023; 13 (04) 1036
  • 49 Hartman JE, Welling JBA, Klooster K, Carpaij OA, Augustijn SWS, Slebos DJ. Survival in COPD patients treated with bronchoscopic lung volume reduction. Respir Med 2022; 196: 106825
  • 50 van der Molen MC, Hartman JE, Vanfleteren LEGW. et al. Reduction of lung hyperinflation improves cardiac preload, contractility, and output in emphysema: a clinical trial in patients who received endobronchial valves. Am J Respir Crit Care Med 2022; 206 (06) 704-711
  • 51 Bezzi M, Darwiche K, Egenod T. et al. CONVERT trial: collateral ventilation conversion by closure of fissure defect with AeriSeal Foam for BLVR with Zephyr valves. Eur Respir J 2022; 60: 1231
  • 52 Slama A, Taube C, Kamler M, Aigner C. Lung volume reduction followed by lung transplantation-considerations on selection criteria and outcome. J Thorac Dis 2018; 10 (Suppl. 27) S3366-S3375
  • 53 Bulsei J, Leroy S, Perotin JM. et al; REVOLENS study group. Cost-effectiveness of lung volume reduction coil treatment in patients with severe emphysema: results from the 2-year follow-up crossover REVOLENS study (REVOLENS-2 study). Respir Res 2018; 19 (01) 84
  • 54 Deslée G, Leroy S, Perotin JM. et al; on behalf of the REVOLENS Study Group13, REVOLENS Study Group. Two-year follow-up after endobronchial coil treatment in emphysema: results from the REVOLENS study. Eur Respir J 2017; 50 (06) 1701740
  • 55 Li A, Lee P. Which endoscopic procedure to use and in what patient? Valves, coils, foam, and heat in COPD and asthma. Pulm Ther 2023; 9 (01) 49-69
  • 56 Roodenburg SA, Hartman JE, Deslée G. et al. Bronchoscopic lung volume reduction coil treatment for severe emphysema: a systematic review and meta-analysis of individual participant data. Respiration 2022; 101 (07) 697-705
  • 57 Slebos DJ, Ten Hacken NH, Hetzel M, Herth FJF, Shah PL. Endobronchial coils for endoscopic lung volume reduction: best practice recommendations from an expert panel. Respiration 2018; 96 (01) 1-11
  • 58 Hu Y, Cheng Y, Zhang H, Li A, Li S, Wang G. A new-designed lung-bending device for bronchoscopic lung volume reduction of severe emphysema: a feasibility study in pigs. Respiration 2019; 97 (05) 444-450
  • 59 Kontogianni K, Brock J, Trudzinski F, Heussel CP, Herth F, Eberhardt R. Evaluation of the Lung Volume Reduction Reverser System (LVR-R) in treating patients with severe emphysema. Feasibility and safety at 6 months follow up; preliminary results. Eur Respir J 2021; 58 (Suppl. 65) PA3799
  • 60 Emery MJ, Eveland RL, Eveland K, Couetil LL, Hildebrandt J, Swenson ER. Lung volume reduction by bronchoscopic administration of steam. Am J Respir Crit Care Med 2010; 182 (10) 1282-1291
  • 61 Snell G, Herth FJ, Hopkins P. et al. Bronchoscopic thermal vapour ablation therapy in the management of heterogeneous emphysema. Eur Respir J 2012; 39 (06) 1326-1333
  • 62 Snell GI, Hopkins P, Westall G, Holsworth L, Carle A, Williams TJ. A feasibility and safety study of bronchoscopic thermal vapor ablation: a novel emphysema therapy. Ann Thorac Surg 2009; 88 (06) 1993-1998
  • 63 Herth FJ, Valipour A, Shah PL. et al. Segmental volume reduction using thermal vapour ablation in patients with severe emphysema: 6-month results of the multicentre, parallel-group, open-label, randomised controlled STEP-UP trial. Lancet Respir Med 2016; 4 (03) 185-193
  • 64 Gompelmann D, Eberhardt R, Schuhmann M. et al. Lung volume reduction with vapor ablation in the presence of incomplete fissures: 12-month results from the STEP-UP randomized controlled study. Respiration 2016; 92 (06) 397-403
  • 65 Zhu W, Zhang Y, Herth FJF. et al. Efficacy of bronchoscopic thermal vapor ablation in patients with heterogeneous emphysema and lobar quantification by three-dimensional ventilation/perfusion single-photon emission computed tomography/computed tomography: a prospective pilot study from China. Chin Med J (Engl) 2022; 135 (17) 2098-2100
  • 66 Come CE, Kramer MR, Dransfield MT. et al. A randomised trial of lung sealant versus medical therapy for advanced emphysema. Eur Respir J 2015; 46 (03) 651-662
  • 67 Shah PL, Slebos DJ, Cardoso PF. et al; EASE trial study group. Bronchoscopic lung-volume reduction with Exhale airway stents for emphysema (EASE trial): randomised, sham-controlled, multicentre trial. Lancet 2011; 378 (9795) 997-1005
  • 68 Zantah M, Gangemi AJ, Criner GJ. Bronchoscopic lung volume reduction: status quo. Ann Transl Med 2020; 8 (21) 1469
  • 69 Kistemaker LE, Gosens R. Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling. Trends Pharmacol Sci 2015; 36 (03) 164-171
  • 70 Kim V, Oros M, Durra H. et al. Chronic bronchitis and current smoking are associated with more goblet cells in moderate to severe COPD and smokers without airflow obstruction. PLoS One 2015; 10 (02) e0116108
  • 71 Belmonte KE. Cholinergic pathways in the lungs and anticholinergic therapy for chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005; 2 (04) 297-304
  • 72 Burgel PR, Nesme-Meyer P, Chanez P. et al; Initiatives Bronchopneumopathie Chronique Obstructive (BPCO) Scientific Committee. Cough and sputum production are associated with frequent exacerbations and hospitalizations in COPD subjects. Chest 2009; 135 (04) 975-982
  • 73 Dotan Y, So JY, Kim V. Chronic bronchitis: where are we now?. Chronic Obstr Pulm Dis (Miami) 2019; 6 (02) 178-192
  • 74 Hartman JE, Garner JL, Shah PL, Slebos DJ. New bronchoscopic treatment modalities for patients with chronic bronchitis. Eur Respir Rev 2021; 30 (159) 200281
  • 75 Han MK, Quibrera PM, Carretta EE. et al; SPIROMICS investigators. Frequency of exacerbations in patients with chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir Med 2017; 5 (08) 619-626
  • 76 McGhan R, Radcliff T, Fish R, Sutherland ER, Welsh C, Make B. Predictors of rehospitalization and death after a severe exacerbation of COPD. Chest 2007; 132 (06) 1748-1755
  • 77 Hummel JP, Mayse ML, Dimmer S, Johnson PJ. Physiologic and histopathologic effects of targeted lung denervation in an animal model. J Appl Physiol (1985) 2019; 126 (01) 67-76
  • 78 Slebos DJ, Shah PL, Herth FJF. et al; AIRFLOW-2 Study Group. Safety and Adverse Events after Targeted Lung Denervation for Symptomatic Moderate to Severe Chronic Obstructive Pulmonary Disease (AIRFLOW). A multicenter randomized controlled clinical trial. Am J Respir Crit Care Med 2019; 200 (12) 1477-1486
  • 79 Mayse ML, Norman HS, Peterson AD, Rouw KT, Johnson PJ. Targeted lung denervation in sheep: durability of denervation and long-term histologic effects on bronchial wall and peribronchial structures. Respir Res 2020; 21 (01) 117
  • 80 Slebos DJ, Klooster K, Koegelenberg CF. et al. Targeted lung denervation for moderate to severe COPD: a pilot study. Thorax 2015; 70 (05) 411-419
  • 81 Valipour A, Asadi S, Pison C. et al. Long-term safety of bilateral targeted lung denervation in patients with COPD. Int J Chron Obstruct Pulmon Dis 2018; 13: 2163-2172
  • 82 Pison C, Shah PL, Slebos DJ. et al. Safety of denervation following targeted lung denervation therapy for COPD: AIRFLOW-1 3-year outcomes. Respir Res 2021; 22 (01) 62
  • 83 Valipour A, Shah PL, Herth FJ. et al; AIRFLOW-2 Trial Study Group. Two-year outcomes for the double-blind, randomized, sham-controlled study of targeted lung denervation in patients with moderate to severe COPD: AIRFLOW-2. Int J Chron Obstruct Pulmon Dis 2020; 15: 2807-2816
  • 84 Mayr AK, Valipour A. Modern bronchoscopic treatment options for patients with chronic bronchitis. J Clin Med 2023; 12 (05) 1854
  • 85 Garner JL, Shaipanich T, Hartman JE. et al. A prospective safety and feasibility study of metered cryospray for patients with chronic bronchitis in COPD. Eur Respir J 2020; 56 (06) 2000556
  • 86 Kim V, Krimsky WS, Bannan B. et al. Bronchial rheoplasty increases distal airway volume in chronic bronchitis. Eur Respir J 2019; 54 (Suppl. 63) PA2040
  • 87 Valipour A, Fernandez-Bussy S, Ing AJ. et al. Bronchial rheoplasty for treatment of chronic bronchitis. Twelve-month results from a multicenter clinical trial. Am J Respir Crit Care Med 2020; 202 (05) 681-689
  • 88 Karakoca Y, Karaagac G, Aydemir C, Caner C. A new endoluminal resection technique and device: resector balloon. Ann Thorac Surg 2008; 85 (02) 628-631
  • 89 Karakoca Y, Gogus G, Akduman S, Erturk B. Follow-up outcomes of chronic obstructive pulmonary disease patients who underwent dilatation and curettage with the Karakoca resector balloon: a 188-case series over 5 years. Medicine (Baltimore) 2018; 97 (48) e13400
  • 90 Karakoca Y, Gogus GK, Yapicier O. Use of resector balloon desobstruction in patients with severe chronic obstructive pulmonary disease: a pilot feasibility study on a novel desobstruction technique. J Bronchology Interv Pulmonol 2015; 22 (03) 209-214