CC BY-NC-ND 4.0 · Revista Chilena de Ortopedia y Traumatología 2024; 65(02): e58-e64
DOI: 10.1055/s-0044-1787735
Artículo Original | Original Article

Las anclas de sutura muestran mayor resistencia que los tornillos de interferencia para la tenodesis del bíceps

Artikel in mehreren Sprachen: español | English
Rodrigo de Marinis
1   Unidad de Hombro y Codo, Departamento de Ortopedia y Traumatología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
,
1   Unidad de Hombro y Codo, Departamento de Ortopedia y Traumatología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
,
Daniel Paccot
2   Unidad de Hombro y Codo, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
,
Felipe Palma
3   Laboratorio LIBFE, Escuela de Kinesiología, Universidad de los Andes, Santiago, Chile
,
Pablo Besa
1   Unidad de Hombro y Codo, Departamento de Ortopedia y Traumatología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
,
Felipe Toro
2   Unidad de Hombro y Codo, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
,
Rodrigo Guzmán
3   Laboratorio LIBFE, Escuela de Kinesiología, Universidad de los Andes, Santiago, Chile
,
René Pozo
2   Unidad de Hombro y Codo, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
› Institutsangaben

Resumen

Objetivo Evaluar cuatro técnicas de fijación diferentes para la tenodesis del bíceps.

Materiales y Métodos En total, 32 hombros de ovejas frescos congelados fueron divididos aleatoriamente en 4 grupos iguales según cada técnica de tenodesis: tornillo biotenodesis (TBT), tornillo de tenodesis SwiveLock (TSL) (Arthrex, Inc., Naples, FL, Estados Unidos), triple lasso-loop (TLL), y doble lasso-loop (DLL). Todas las tenodesis se realizaron suprapectoralmente en la corredera bicipital. Para los tornillos de interferencia (TI), no se añadieron nudos adicionales después de la fijación. Todas las muestras fueron sometidas a carga de falla final (CFF), y se calculó el punto de cedencia (PC). Se registró el modo de fallo para cada muestra, y se realizó un análisis estadístico utilizando una prueba de Kruskal-Wallis y la prueba post hoc de Dunn. Se consideró significativo un valor de p < 0,05.

Resultados La CFF registrada para cada grupo experimental fue la siguiente: grupo TBT = 126,2 (rango: 94,8–161,1) N; grupo TSL = 95,8 (rango: 75,9–130) N; grupo DLL = 208,4 (rango: 195,3–219,5) N; y grupo TLL = 261,4 (rango: 194,9–306,5) N. El modo de fallo para todas las muestras en los grupos TI fue la extracción del tendón de la fijación, mientras que las muestras en los grupos de anclaje de sutura (AS) en su mayoría fallaron por ruptura del tendón. Ambas técnicas de AS mostraron una CFF y un PC significativamente más altos cuando se compararon con cada técnica de TI (p < 0,01). No hubo diferencias significativas en términos de la CFF o del PC logrados entre el uso de DLL y de TLL.

Conclusión En este modelo de prueba cadavérica animal, las técnicas de AS demostraron una CFF más alta en comparación con las técnicas de TI sin nudos. Específicamente, dentro de las técnicas de AS, se encontró que la resistencia mecánica a la carga axial de DLL es comparable a la de TLL.

Nivel de Evidencia Estudio de ciencia básica.



Publikationsverlauf

Eingereicht: 28. Dezember 2022

Angenommen: 02. April 2024

Artikel online veröffentlicht:
25. September 2024

© 2024. Sociedad Chilena de Ortopedia y Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referencias

  • 1 Lansdown DA, Bernardoni ED, Verma NN. Surgical technique for arthroscopic onlay suprapectoral biceps tenodesis with an all-suture anchor. JSES Open Access 2018; 2 (01) 69-73
  • 2 Provencher MT, LeClere LE, Romeo AA. Subpectoral biceps tenodesis. Sports Med Arthrosc Rev 2008; 16 (03) 170-176
  • 3 Ahrens PM, Boileau P. The long head of biceps and associated tendinopathy. J Bone Joint Surg Br 2007; 89 (08) 1001-1009
  • 4 Delle Rose G, Borroni M, Silvestro A. et al. The long head of biceps as a source of pain in active population: tenotomy or tenodesis? A comparison of 2 case series with isolated lesions. Musculoskelet Surg 2012; 96 (Suppl. 01) S47-S52
  • 5 Hsu AR, Ghodadra NS, Provencher MT, Lewis PB, Bach BR. Biceps tenotomy versus tenodesis: a review of clinical outcomes and biomechanical results. J Shoulder Elbow Surg 2011; 20 (02) 326-332
  • 6 Slenker NR, Lawson K, Ciccotti MG, Dodson CC, Cohen SB. Biceps tenotomy versus tenodesis: clinical outcomes. Arthroscopy 2012; 28 (04) 576-582
  • 7 Shang X, Chen J, Chen S. A meta-analysis comparing tenotomy and tenodesis for treating rotator cuff tears combined with long head of the biceps tendon lesions. Nordez A, editor. PLoS One. 2017; Oct 9; 12 (10) e0185788
  • 8 Virk MS, Nicholson GP. Complications of Proximal Biceps Tenotomy and Tenodesis. Clin Sports Med 2016; 35 (01) 181-188
  • 9 Gurnani N, van Deurzen DFP, Janmaat VT, van den Bekerom MPJ. Tenotomy or tenodesis for pathology of the long head of the biceps brachii: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2016; 24 (12) 3765-3771
  • 10 Papp DF, Skelley NW, Sutter EG. et al. Biomechanical evaluation of open suture anchor fixation versus interference screw for biceps tenodesis. Orthopedics 2011; 34 (07) e275-e278
  • 11 Park JS, Kim SH, Jung HJ, Lee YH, Oh JH. A Prospective Randomized Study Comparing the Interference Screw and Suture Anchor Techniques for Biceps Tenodesis. Am J Sports Med 2017; 45 (02) 440-448
  • 12 Patzer T, Rundic JM, Bobrowitsch E, Olender GD, Hurschler C, Schofer MD. Biomechanical comparison of arthroscopically performable techniques for suprapectoral biceps tenodesis. Arthroscopy 2011; 27 (08) 1036-1047
  • 13 Patzer T, Santo G, Olender GD, Wellmann M, Hurschler C, Schofer MD. Suprapectoral or subpectoral position for biceps tenodesis: biomechanical comparison of four different techniques in both positions. J Shoulder Elbow Surg 2012; 21 (01) 116-125
  • 14 Tashjian RZ, Henninger HB. Biomechanical evaluation of subpectoral biceps tenodesis: dual suture anchor versus interference screw fixation. J Shoulder Elbow Surg 2013; 22 (10) 1408-1412
  • 15 Su WR, Budoff JE, Chiang CH, Lee CJ, Lin CL. Biomechanical study comparing biceps wedge tenodesis with other proximal long head of the biceps tenodesis techniques. Arthroscopy 2013; 29 (09) 1498-1505
  • 16 Gigi R, Dolkart O, Sharfman ZT. et al. Biomechanical evaluation of two arthroscopic techniques for biceps tenodesis: triple loop suture versus simple suture. J Shoulder Elbow Surg 2017; 26 (01) 165-169
  • 17 Lafosse L, Van Raebroeckx A, Brzoska R. A new technique to improve tissue grip: “the lasso-loop stitch”. Arthroscopy 2006; 22 (11) 1246.e1-1246.e3
  • 18 Bois AJ, Roulet S, Le Dû C, Neyton L, Godenèche A. The “Double Lasso-Loop” Technique Used for Arthroscopic Proximal Biceps Tenodesis. Arthrosc Tech 2019; 8 (03) e291-e300
  • 19 Boileau P, Krishnan SG, Coste JS, Walch G. Arthroscopic biceps tenodesis: a new technique using bioabsorbable interference screw fixation. Arthroscopy 2002; 18 (09) 1002-1012
  • 20 Valenti P, Benedetto I, Maqdes A, Lima S, Moraiti C. “Relaxed” biceps proximal tenodesis: an arthroscopic technique with decreased residual tendon tension. Arthrosc Tech 2014; 3 (05) e639-e641
  • 21 Richards DP, Burkhart SS. A biomechanical analysis of two biceps tenodesis fixation techniques. Arthroscopy 2005; 21 (07) 861-866
  • 22 Ramos CH, Coelho JCU. Biomechanical evaluation of the long head of the biceps brachii tendon fixed by three techniques: a sheep model. Rev Bras Ortop 2016; 52 (01) 52-60
  • 23 Ozalay M, Akpinar S, Karaeminogullari O. et al. Mechanical strength of four different biceps tenodesis techniques. Arthroscopy 2005; 21 (08) 992-998
  • 24 Kilicoglu O, Koyuncu O, Demirhan M. et al. Time-dependent changes in failure loads of 3 biceps tenodesis techniques: in vivo study in a sheep model. Am J Sports Med 2005; 33 (10) 1536-1544
  • 25 Jayamoorthy T, Field JR, Costi JJ, Martin DK, Stanley RM, Hearn TC. Biceps tenodesis: a biomechanical study of fixation methods. J Shoulder Elbow Surg 2004; 13 (02) 160-164
  • 26 Shi D, Wang D, Wang C, Liu A. A novel, inexpensive and easy to use tendon clamp for in vitro biomechanical testing. Med Eng Phys 2012; 34 (04) 516-520
  • 27 Golish SR, Caldwell III PE, Miller MD. et al. Interference screw versus suture anchor fixation for subpectoral tenodesis of the proximal biceps tendon: a cadaveric study. Arthroscopy 2008; 24 (10) 1103-1108
  • 28 Mazzocca AD, Bicos J, Santangelo S, Romeo AA, Arciero RA. The biomechanical evaluation of four fixation techniques for proximal biceps tenodesis. Arthroscopy 2005; 21 (11) 1296-1306
  • 29 Romeo AA, Mazzocca AD, Tauro JC. Arthroscopic biceps tenodesis. Arthroscopy 2004; 20 (02) 206-213